• Title/Summary/Keyword: Flammable

Search Result 510, Processing Time 0.023 seconds

Radiolysis of Paraffin Encapsulation Wax (파라핀 고화체의 방사선적 가수분해)

  • Kim, Chang-Lak;Lee, Myung-Chan;Park, Won-Jae;Suk, Tae-Won;Burns William G.
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.4
    • /
    • pp.237-243
    • /
    • 1995
  • An estimate is made on the potential generation rate of H: from radiolysis of the Paraffin-wax encapsulant Proposed for the solidified liquid concentrate wasteform. The results show that the radiolytic Production of $H_2$ from paraffin-wax-encapsulated waste is dominated by the radiation energy released from $^{60}Co$. The radiolytic production of $H_2$ will proceed at an initial rate equivalent to aproximately $4.4{\times}10^2cm^3yr^1$ in 200 litre drums that are partly filled with 120 litres of encapsulated waste. The gas production rate will fall to a value of $7.2cm^3yr^1$ after 100 years. The lower flammable limit for $H_2$ in air will be reached in about 25 years and the lower explosive limit for $H_2$ in air would not be reached in 1000years. The timescale in which these safety-related limits are reached is strongly dependent on the level of filling of each waste drum. A reduction of the air space inside each drum would reduce the time required to reach the lower flammable limit.

  • PDF

Study of the Risk of Ignition due to Internal Combustion Engines in Areas with Potentially Explosive Gas Atmospheres (잠재적 폭발위험장소에서 내연기관에 의한 점화 위험성에 관한 연구)

  • Kim, Yun Seok;Rie, Dong Ho
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • Safety management in hazardous areas with potentially explosive gas atmospheres (here in after referred to as hazardous areas) in large scale facilities dealing with combustible or flammable materials at home and abroad is very important (significant) for the coexistence of the company and local society based on business continuity management (BCM) and reliance. For the safety management in hazardous areas, two systems are mainly used: (1) the control system for the prevention of combustible or flammable substances and (2) the explosion proof system for the elimination of ignition sources when flammable gases are leaked to inhibit the transition to fire or explosion accidents. While technology and regulations on explosion proof facilities or devices for electrical ignition sources are well developed and defined, those for thermal ignition sources need to be more developed and established. In this study, the internal combustion engine in hazardous areas was investigated to determine the risk of ignition. For this purpose, document searches were conducted on the relevant international standards and accidents cases and risk analysis reports. In addition, this study assessed the application cases of the diesel engine's safety equipment, such as spark arresters regarding the site of process safety management (PSM) system in central Korea. To practically apply these results to the hydrocarbon industry, the safety management method for explosion prevention in hazardous areas was provided by risk identification for ignition sources of internal combustion engines, such as diesel engines.

Dispersion Characteristics of Hydrogen Gas by the Effect of Leakage Hole Size in Enclosure Space (누출공 크기에 따른 밀폐공간 내 수소 가스의 확산 특성)

  • Choi, Jinwook;Li, Longnan;Park, Chul-Woo;Lee, Seong Hyuk;Kim, Daejoong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.26-35
    • /
    • 2016
  • As a potential clean energy resource, the production and consumption of hydrogen gas are expected to gradually increase, so that hydrogen related studies are also increasing. The thermal and chemical properties of hydrogen result in its high flammability; in particular, there is a high risk if leaks occur within an enclosed space. In this study, we applied the computational fluid dynamics method to conduct a numerical study on the leakage behavior of hydrogen gas and compared these numerical study results with an experimental study. The leakage hole diameter was selected as an important parameter and the hydrogen gas dispersion behavior in an enclosed space was investigated through various analytical methods. Moreover, the flammable regions were investigated as a function of the leakage time and leakage hole size. We found that the growth rate of the flammable region increases rapidly with increasing leakage hole size. We also investigated the relation between the mass flow rate and the critical time when the hydrogen gas reaches the ceiling. The analysis of the monitoring points showed that the hydrogen gas dispersion behavior is isotropic and independent of the geometry. We found that the concentration of gas in an enclosed space is affected by both the leakage flow rate and amount of gas accumulated in the enclosure.

Method to Derive the Optimal Vent Position when Flammable Liquid Leaks Based on CFD (CFD 기반 인화성 액체 누출 시 최적의 환기구 배치 도출 방안)

  • Eun-Hee Kim;Seung-Hyo An;Jun-Seo Lee;Byung-Chol Ma
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 2024
  • If flammable liquid leaks, vapor evaporated from the pool can cause poisoning or suffocation to workers, leading to secondary accidents such as fires and explosions. To prevent such damage, ventilation facilities shall be installed when designing indoor workplaces. At this time, the behavior varies depending on the characteristics of the leaked chemical, so it is necessary to select a suitable vent location according to the material. Therefore, 3D CFD simulations were introduced to derive optimal vent position and ventilation efficiency was quantitatively evaluated by vent position. At this time, assuming a situation in which flammable liquids leak at indoor workplaces to form pools, the concentration of vapor evaporated from pools was compared to derive the optimal vent position. As a result of research on toluene with high vapor density, ventilation efficiency was confirmed to be the highest at the upper supply-lower exhaust, and it is judged that introducing it can achieve about 3.7 times ventilation effect at the same maintenance cost. Through this study, it is expected that the workplace will be able to secure workers' safety by applying simulation results and installing ventilation ports.

A study on the gelation properties of the flammable liquids (인화성액체의 겔화 특성에 관한 연구)

  • 강영구;정문호
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.05a
    • /
    • pp.185-188
    • /
    • 1998
  • 인화성액체는 공장가동에 필요한 연료, 생산과정에서 사용되는 세척제$\cdot$용제, 원료 등 거의 모든 화학공업에서 광범위하게 사용되고 있다. 인화성 액체는 소방법에서 제4류로, 산업안전보건법에서는 인화성물질로, 선박안전법에서는 선적액체 위험물 중 인화성액체 물질로 각각 구분되어 제조, 저장, 취급, 운반, 이송시 지정수량과 저장, 취급방법의 규제 등으로 엄격히 관리되고 있는 실정이다. (중략)

  • PDF

Prediction of Explosive Limits for Flammable Mixture Solution by Means of Solution Theory (용액론에 의한 가연성혼합용액의 폭발한계 예측)

  • 하동명
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1999.06a
    • /
    • pp.69-72
    • /
    • 1999
  • 공정상에서 화재 및 폭발위험을 최소화하기 위해서는 공정의 안전과 최적화조작이 이루워 져야 하는데, 우선 작업 조건하에서 취급물질의 연소특성치 파악이 필요하다. 화학공정에 있어서 설계의 요지는 공정모사 프로그램이다. 최근에는 공정모사 프로그램에 응용하기 위해 열역학적 물성치 데이터베이스 연구에 화재ㆍ폭발 특성치 연구가 활발히 진행되고 있다. 이는 공장을 건설하기 전에 안전성 평가가 이루어져야 하기 때문이다. (중략)

  • PDF

Corrosion Behavior of Non-Flammable Magnesium Alloy (난연성 마그네슘합금의 부식거동)

  • Im, Chang-Dong;U, Sang-Gyu;Kim, Yeong-Min;Kim, Ha-Sik;Yu, Bong-Seon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.185-185
    • /
    • 2015
  • 상용 AZ계열 마그네슘합금에 Ca을 첨가한 경우 발화저항성은 증가한 반면에 내식성은 감소하였다. 이에 비하여 Ca과 Y을 복합첨가한 경우에는 발화저항성 뿐만 아니라 내식성도 크게 향상되었다. 이는 합금원소의 종류 및 첨가량 변화에 따른 제2상의 종류와 분율의 변화 및 표면피막의 특성 변화에 기인한다.

  • PDF