• Title/Summary/Keyword: Flame retardant treatment

Search Result 67, Processing Time 0.023 seconds

Manufacture of Environmentally-friendly Flame-retardant Paper with Polyethylene Terephthalate (PET) Short Cut Fiber (PET 섬유를 사용한 친환경 난연지 제조방법에 대한 연구)

  • Kim, Ji-Seop;Lee, Myoung-Ku
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.14-20
    • /
    • 2012
  • In this paper, the flame-retardant wall paper was successfully prepared with recycled polyethylene terephthalate (PET) short cut fiber with flame-retardant property and wood pulp using polyvinyl alcohol (PVA) as binder followed by treatment of non-halogen flame retardant. Physical properties such as formation index, tensile strength, elongation, and burst strength increased as defibrillation increased except tear strength. Bulk increased but formation index, tensile strength, elongation and burst strength decreased along with addition of PET short cut fiber. It was also found that tear strength rose significantly up to 30% of PET short cut fiber and then declined (fell) rapidly. As addition level of PVA increased tensile strength, elongation and burst strength increased, but tear strength decreased slightly. Addition of 20% of PET short cut fiber and 13% of PVA provided the flame-retardant wall paper with both improved flameproofing and physical properties.

Dual-curable Flame-Retardant Finish of Silk Fabrics Using a Water-soluble Cyclophosphazene Derivative (수용성 Cyclcophosphazene 유도체를 이용한 견섬유의 이중경화형 방염가공)

  • Kim, Jeong-Hwan;Baek, Ji-Yun;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.217-223
    • /
    • 2022
  • Flame-retardant finished silk fabrics could release carcinogenic formaldehyde resulting from the conventional finishing agents. New water-soluble cyclophosphazene derivative can be used as a formaldehyde-free flame retardant for the silk protein. Dichloro tetrakis{N-[3-dimethylamino)propyl]methacrylamido}cyclophosphazene(DCTDCP) can be cured by heat or UV irradiation as a durable flame retardant for the silk fabrics. Treatment conditions were optimized including curing temperature and time, finishing formulations, and UV energy. At the 30% DCTDCP application, peak HRR and THR decreased by 42.6% and 49.6% respectively compared to the pristine silk fabrics. Also char residue increased up to 48% from 11% indicating solid-phase retarding mechanism. The flame-retardant silk fabrics showed a LOI of 31.1 and the washed sample maintained a LOI of 26.8 even after ten laundering cycles.

Performance of Structural Glulam Manufactured with Fire Retardants Treated Lumbers (난연처리 제재목으로 제조한 구조용 집성재의 강도 성능평가)

  • Son, Dong-Won;Eom, Chang-Deuk;Park, Jun-Cheol;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.477-482
    • /
    • 2014
  • Consumer demand for wood use has diversified recently. Laminated wood has been used for large-scale buildings and public buildings, not only the durability but also the demand for fire safety has increased. In this study. it was performed for the purpose of developing a standard and flame-retardant treatment technology suitable for structural laminated wood, which was prepared in domestic larch. In this study, by using the domestic larch and Korean pine lumber which treated with flame-retardants, to manufacture the glulam, the effect of strength properties were investigated. In the case of fire retardant treated larch Glulam was satisfactory conditions of the strength of structural laminated wood, but had to be improved, such as the occurrence of delamination and decrease strength by the flame retardant treatment. Development of application-type flame retardant treatment technology or injection-type flame retardant treatment after production of laminated lumber were required.

Effect of Fixation Methods on the Flame Retardant and Performance Properties of MDPPA/HMM treated Cotton (MDPPA/HMM처리 면직물의 고착방법에 따른 방염성과 물성의 변화)

  • 지주원;오경화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2000
  • Effect of fixation methods on the flame retardant(FR) and performance properties of MDPPA/HMM treated cotton fabrics were studied. Combination of three different fixation methods - premercerization, swelling agent treatment, pad dry cure fixation, and wet fixation - were applied to flame retardant finish of cotton with MDPPA/HMM. As a result, an increase in internal volume of cotton fiber by pre-mercerization and addition of swelling agent, and wet fixation increased %add-on of FR agent improving FR efficiency and wash fastness. Tensile strength of MDPPA/HMM treated cotton fabrics by wet fixation and swelling agent were slightly decreased, but that of premercerized cotton was improved. Wet fixated fabric showed lower bending rigidity and better compressional properties which improved fabric hand. Retention of swelling ability of cotton treated with MDPPA/HMM improved moisture absorption properties.

  • PDF

The Cause of Whitening by Flame Retardants Treatment on Korean Wooden Cultural Heritage

  • Kim, Jin Qyu;Chung, Yong Jae;Lee, Hwa Soo;Seo, Hyun Jeong;Son, Dong Won;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.589-599
    • /
    • 2016
  • Korean wooden cultural heritages are treated by flame retardants to protect fire hazards. Two types of flame retardants are used to treat wooden cultural heritage. These flame retardants cause some problems such as surface whitening, discoloration, and cracks due to the chemical reaction caused by Korean traditional wood painting (Dancheong), flame retardant and wood humidity. The Korean government is trying to cut down on the amount of flame retardants for the wooden cultural heritage because of these problems. This study was carried out to find the cause of whitening by flame retardants treatment. The reaction between pigment and flame retardant chemicals was analyzed by infrared spectroscopy.

Studies on Plywood Treated Fire-Retardant - III. The Fire-Retardant Degree of Monoammonium Phosphate Treated Plywood (합판(合板)의 내화처리(耐火處理)에 관(關)한 연구(硏究) - III. 제1인산(第一燐酸)암모늄처리합판(處理合板)의 내화도(耐火度))

  • Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.21-28
    • /
    • 1986
  • Plywood used for construction as a decorative inner material is inflammable and can fire accident, causing destruction of human life and property. In this study, 3.5mm Kapur plywoods were soaked in the 23% monoammonium phosphate solutions by cold soaking method 3, 6, 9hrs and hot-cold bath method for 3/3hrs, and redrying was carried out by press-drying at the platen temperature of 110, 130, 160, 180$^{\circ}C$, and then fire test was carried out to investigate burning point, flame exhausted length, frame spread length, back side carbonized area and weight loss. The results are as follows; 1. In cold soaking method for 3, 6, 9hrs. retentions of monoammonium phosphate were 0.377, 0.448, 0.498kg/(30cm)$^3$ respectively, and in hot-cold bath method for 3/3hrs, the retention was 1.331kg(30cm)$^3$ that exceeded the minimum retention 1.124kg/(30cm)$^3$. 2. Correlation coefficients among the variable were shown in table 2. From the table, it could be recognized that there were close negative correlations between the treatment and burning point, flame spread length, back side carbonized area, flame exhausted time and weight loss, and there was negative correlation between treating time and back side carbonized area, but there was positive correlation between platen temperature and burning point. 3. From table 3, it can be observed that there were highly significant differences for burning point, flame spread length, flame exhausted time, back side carhonized area, weight loss between treatments. And in 2-way interactions, there were also highly significant for burning point, flame spread length, flame exhausted time, weight loss between time x treatment. 4. It was observed that burning point, flame exhausted time, flame spread length, back side carbonized area, and weight loss in fire-retardant treated plywood were the best effects in fire-retardant treated plywood, water treated plywood and nontreated plywood. In conclusion, I can estimate that absorbed chemical contents by hot-cold bath method for 3/3hrs, have a lot of effects on fire-retardant factors such as burning point, flame spread length, flame exhausted time, backside carbonized area and weight loss, but platen temperatures have a little effects on the fire factors.

  • PDF

Effect of Disperse Dyeing on UV-curable Flame-retardant Finish of PET Fabrics (분산염료 염색공정이 PET직물의 UV경화형 방염가공에 미치는 영향)

  • Jeong, Yong-Kyun;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.20 no.2
    • /
    • pp.66-74
    • /
    • 2008
  • Effect of disperse dyeing on flame retardant finishing of PET fabrics via UV curing using three UV curable phosphorous-containing methacrylates and ammonium polyphosphate(APP) was investigated. The dye fixation and flame retardancy of PET fabrics did not change significantly with excellent durability to five laundering cycles irrespective of the dyeing and finishing sequence. However, the flame retardancy of Pekoflam-treated fabrics was lower than that of the UV treated and decreased substantially when heat treatment was carried out before the dyeing. The dyeability of the flame-retardant PET fabrics was not affected in the case of UV curing of the methacrylates alone. However, UV finishing after the dyeing caused significant decrease in K/S and ${\Delta}E$ due to changed refraction and inherent color of surface coating of the UV curable monomers and APP. Whereas the heat treatment with Pekoflam decreased both color fastness to laundering and sublimation, surprisingly the UV finish of PET fabrics before and after the dyeing increased the color fastness probably resulting from the presence of photopolymerized surface layer on the fabrics.

Effects of NaCl/H3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties (NaCl/H3PO4 내염화 처리가 라이오셀 섬유의 열 안정 및 내산화 특성에 미치는 영향)

  • Kim, Eun Ae;Bai, Byong Chol;Jeon, Young-Pyo;Lee, Chul Wee;Lee, Young-Seak;In, Se Jin;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.418-424
    • /
    • 2014
  • The improved thermal stability and anti-oxidation properties of Lyocell fiber were studied based on flame retardant treatment by using NaCl/$H_3PO_4$ solution. The optimized conditions of flame retardant treatment were studied on various maxing ratio of NaCl and $H_3PO_4$ and the mechanism was proposed through experimental results of thermal stability anti-oxidation. The IPDT (integral procedural decomposition temperature), LOI (limited oxygen index) and $E_a$ (activation energy) increased 23, 30 and 24% respectively via flame retardant treatment. It is noted that thermal stability and anti-oxidation improved based on char and carbon layer formation by dehydrogenation and dissociation of C-C bond resulting the hindrance of oxygen and heat energy into polymer resin. The optimized conditions for efficient flame retardant property of Lyocell fiber were provided using NaCl/$H_3PO_4$ solution and the mechanism was also studied based on experimental results such as IDT (initial decomposition temperature), IPDT, LOI and $E_a$.

Na3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties (라이오셀의 열 안정 및 내산화 특성 향상을 위한 Na3PO4 내염화 처리)

  • Kim, Hyeong Gi;Kim, Eun Ae;Lee, Young-Seak;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.25-32
    • /
    • 2015
  • The improved thermal stability and anti-oxidation properties of lyocell fiber were studied based on flame retardant treatment by using $Na_3PO_4$ solution. The optimized conditions of flame retardant treatment were studied on various concentrations of $Na_3PO_4$ and the mechanism was proposed through experimental results of thermal stability and anti-oxidation. The integral procedural decomposition temperature (IPDT), limiting oxygen index (LOI) and activation energy ($E_a$) increased 30, 160% respectively via flame retardant treatment. It is noted that thermal stability and anti-oxidation improved based on char and carbon layer formation by dehydrogenation and dissociation of C-C bond resulting the hindrance of oxygen and heat energy into polymer resin. The optimized conditions for efficient flame retardant property of lyocell fiber were provided using $Na_3PO_4$ solution and the mechanism was also studied based on experimental results such as initial decomposition temperature (IDT), IPDT, LOI and $E_a$.

A Study on Flame Retardant Treatment on Bamboo Nonwoven Fabric and Manufacturing of Sandwich Structure Composites (대나무 섬유의 난연화 및 샌드위치 구조 복합재료 제조연구)

  • Lee, Dong-Woo;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.408-414
    • /
    • 2020
  • The present engineering sector focused on the sandwich composites and almost covered all engineering fields because of decent mechanical properties with a lightweight structure. It mainly consists of high strength fiber skin and porous structure core like corrugated, honeycomb, balsa wood, and foams which is playing a pivotal role in weight reduction. Recently researchers attention grabbed by Natural fiber sandwich composites due to biodegradability, renewable, low-cost, and environmentally friendly. However special focus is highly needed towards the flammability behavior of natural fibers used as reinforcement for composites. Herein, for the first time, the flame retardant natural fiber sandwich composite was fabricated by using flame retardant treated bamboo fabric and vinyl ester via the VARTM process. The impact of flame retardant treated bamboo fabric on mechanical and flame retardant properties were studied. The results concluded that the fabricated bamboo sandwich composites show structurally lightweight with significant mechanical strength and feasibility with respect to the flame.