• 제목/요약/키워드: Flame retardancy

검색결과 188건 처리시간 0.024초

적인을 포함한 Ortho-Cresol Novolac/Biphenyl 에폭시 복합재료의 발포성 난연 기구 (The Intumescent Flame Retardant Mechanism of Red-phosphorus Containing Ortho-Cresol Novolac / Biphenyl Epoxy Composites)

  • 김윤진;강신우;유제홍;김익흠;서광석
    • 폴리머
    • /
    • 제26권5호
    • /
    • pp.623-633
    • /
    • 2002
  • 적인을 이용한 ortho-cresol novolac (OCN)과 biphenyl계 혼합 에폭시 수지 조성물의 열적 특성과 난연 특성을 검토하였다. OCN과 biphenyl 에폭시의 부피비에 따라 5가지 조성물을 디자인하였으며, TGA 및 DTG, 그리고 UL-94V 테스트를 통해 난연 효과를 평가하였다. 충전제와 적인의 함량이 증가할수록 열적 성질 및 우수한 난연 효과를 보였으나, 과량의 적인을 적용하였을 경우에는 열안정성의 저하를 유발하였다. 복합재료의 기저 수지호서 OCN/biphenyl 혼합 에폭시를 사용하였을 경우 OCN의 내열특성과 biphenyl 에폭시의 높은 발포 특성에 기인하여 보다 향상된 난연 특성을 확보할 수 있었다. 적인을 적용한 에폭시 수지 조성물의 난연 기구는 표면에서 형성된 발포성 탄화층 (char-layer)의 열적 방어 효과로 판단할 수 있었다.

DMT(Dimethylterephthalate), NDC(Dimethy1-2,6-Naphthalene Dicarboxylate)를 이용한 액상 폴리에스터 폴리올의 합성에 관한 연구 (Studies on Synthesis of Liquid Polyester Polyol by using DMT(Dimethylterephthalate) and NDC(Dimethyl-2,6-Naphthalene Dicarboxylate))

  • 김상헌
    • 한국응용과학기술학회지
    • /
    • 제26권3호
    • /
    • pp.317-327
    • /
    • 2009
  • In this study DMT(Dimethylterephthalate), NDC(Dimethyl-2, 6-Naphthalene Dicarboxylate) were used to synthesize polyester polyol which shows enhanced storage stability, improved flame retardancy, and good compressive strength. If DMT and NDC react respectively with DEG(Diethylene Glycol) which is kind of linear diol, the obtained polyester polyols tend to crystallize easily after the reaction. In case of DMT, PA(Phthalic Anhydride) which has asymmetric structure was introduced to retard the crystallization. In case of NDC, DPG(Dipropylene Glycol) which has an methyl side chain was introduced to prevent the crystallization. It was found that to introduce DPG was much more effective method to prevent the crystallization than PA. NDC and DMT were reacted together with DPG for various compositions of NDC:DMT(8:2, 6:4, 4:6 mol ratio). The obtained NDC-DMT-DPG based polyester polyol showed improved flame retardancy, and good compressive strength with increasing the content of NDC.

분산염료 염색공정이 PET직물의 UV경화형 방염가공에 미치는 영향 (Effect of Disperse Dyeing on UV-curable Flame-retardant Finish of PET Fabrics)

  • 정용균;장진호
    • 한국염색가공학회지
    • /
    • 제20권2호
    • /
    • pp.66-74
    • /
    • 2008
  • Effect of disperse dyeing on flame retardant finishing of PET fabrics via UV curing using three UV curable phosphorous-containing methacrylates and ammonium polyphosphate(APP) was investigated. The dye fixation and flame retardancy of PET fabrics did not change significantly with excellent durability to five laundering cycles irrespective of the dyeing and finishing sequence. However, the flame retardancy of Pekoflam-treated fabrics was lower than that of the UV treated and decreased substantially when heat treatment was carried out before the dyeing. The dyeability of the flame-retardant PET fabrics was not affected in the case of UV curing of the methacrylates alone. However, UV finishing after the dyeing caused significant decrease in K/S and ${\Delta}E$ due to changed refraction and inherent color of surface coating of the UV curable monomers and APP. Whereas the heat treatment with Pekoflam decreased both color fastness to laundering and sublimation, surprisingly the UV finish of PET fabrics before and after the dyeing increased the color fastness probably resulting from the presence of photopolymerized surface layer on the fabrics.

Cyclophosphazene 고리를 갖는 ABS용 난연제 (Flame Retardants Containing Cyclophosphazene Ring for ABS)

  • 신영재;신연록;박수진;신재섭
    • 폴리머
    • /
    • 제31권4호
    • /
    • pp.273-277
    • /
    • 2007
  • 할로겐을 포함하지 않은 난연제를 개발하기 위하여 cyclophosphazene 유도체들을 합성하여 이들을 ABS를 위한 난연제로 사용하여 보았다. Chlorocyclophosphazene에 phenol, catechol, aniline, 1,2-diaminobenzene 등을 반응시켜 각각의 유도체들을 합성하였으며 이들이 ABS에 얼마나 잘 난연성을 나타내는지를 UL94, LOI 등으로 살펴보았다. 이들 난연제를 함유하는 ABS 시료의 물성도 알아보았다. Catechol로부터 합성된 유도체가 가장 우수한 난연 결과를 보여주었으며 phenol로부터 합성된 유도체의 경우에는 novolac과 같은 고분자와 혼합한 다음에 첨가하면, 같은 양의 첨가로 더 우수한 난연성을 보여 주었다.

Diphenyl ethanolamidophosphate의 합성과 면섬유에 대한 방염성 (The Synthesis of Diphenyl ethanolamidophosphate (DPEAP) and the Flame Retardancy of Cotton Fabric)

  • Huh, Man Woo;Yoon, Jong Ho;Cho, Yong Suk;Kim, Young Suk;Lim, Hak Sang
    • 한국염색가공학회지
    • /
    • 제8권2호
    • /
    • pp.25-34
    • /
    • 1996
  • Diphenyl ethanolamidophosphate(DPEAD) was synthesized for the purpose of developing a new flame retardant for cotton fabric. As the intermediate material was used diphenyl chlorophosphate(DPCP) and it was synthesized by using phosphorus oxychloride and phenol as the starting materials. The final product DPEAP was obtained by the reaction of DPCP and ethanolamine. The flame retardancy of cotton fabrics treated by DPEAP through pad-dry-cure(PDC) process was examined at various conditions. The physical property change of the DPEAP treated cotton fabrics were investigated by examining the drape stiffness, the wrinkle recovery, and the tensile strength. The results are summarized as follows: (1) DPEAP has shown excellent flame retardancy on cotton fabrics in comparison to other flame retardants for cotton fabrics available commercially. (2) The optimal condition for PDC process found was that the curing temperature was 16$0^{\circ}C$, the DPEAP concentration was 10%, the catalyst $({NH_{4})_{2}HPO_{4}$ concentration was 7.0%, and the fixing agent hexamethylol melamine (HMM)/DPEAP weight ratio was 1/8. (3) The wrinkle recovery of the processed fabrics increased with increasing DPEAP concentration. (4) The drape stiffness of the cotton fabrics treated by DPEAP have shown essentially no change until increasing DPEAP concentration to 15 %, however DPEAP concentration exceeds 20% the drape stiffness increased drastically with increasing DPEAP concentration. When DPEAP concentration is kept constant the drape stiffness increased with increasing $({NH_{4})_{2}HPO_{4}$ concentration and HMM/DPEAP weight ratio. (5) The tensile strength of the processed fabrics was lower than that of untreated fabrics, but the tensile strength retention increased with increasing DPEAP concentration.

  • PDF

니트릴고무/타이어고무분말(GTR)를 이용한 발포체의 발포 및 난연 특성에 관한 연구 (Foaming Properties and Flame Retardancy of the Foams Based on NBR/GTR Compounds)

  • 문성철;조병욱;최재곤
    • Elastomers and Composites
    • /
    • 제37권3호
    • /
    • pp.159-169
    • /
    • 2002
  • 본 연구에서는 acrylonitrile-butadiene rubber(NBR)/타이어고무분말(Ground Tire Rubber, GTR) 블렌드계의 발포체를 제조하고, 이들의 난연성을 증진시키고자 하였다. 그 결과 난연제 중 유기인 화합물 및 무기금속 수산화물의 함량 증가에 따라 난연성이 증진됨을 확인할 수 있었다. 유기인 화합물의 경우 함량 증가에 따라 한계산소지수(LOI)가 증가하고, 열 방출 속도(HRR) 및 유효 연소열(EHC)이 감소하는 반면에 CO 방출률(량) 및 역기밀도가 증가함을 확인 할 수 있었다. 무기금속 수산화물은 함량 증가에 따라 난연효과 뿐만 아니라 열기발생 억제효과를 동시에 가짐으로써 LOI, HRR, EHC가 유기인 화합물 첨가에서와 같은 경향성을 보여주었지만 CO 방출률(량) 및 연기밀도에 있어서는 유기인 화합물 첨가에서와 상이하게 감소하였다. 그리고 난연성을 판단함에 있어 중요한 변수들인 열 방출속도, 유효 연소열, 무게감소, 한계산소지수간의 상관관계를 확인하였는데, A-HRR과 LOI가 증가함에 따라 질량손실이 각각 증가 혹은 감소하는 뚜렷한 경향성을 확인하였다. 이로써 NBR/GTR의 조성비기 $100{\sim}80/0{\sim}20 wt.%$이고 고무/난연제의 조성비가 $1/1.55{\sim}3.60 wt.%$일 때, 원활한 핵의 생성 및 cell의 성장으로 인해 균일한 closed cell 및 semi-closed cell을 보여주었다. 또한 $225{\sim}250 %$의 발포율을 보이며, 낯은 HRR과 높은 LOI($28.0{\sim}39.3$)를 갖는 난연성 및 발포성이 우수한 발포체를 얻을 수 있었다.

열가소성 분말 코팅소재 제조 및 난연특성 연구 (A Study on the Preparation of Thermoplastic Powder Coating Material and Its Flame Retardancy)

  • 이순홍;정화영
    • 한국안전학회지
    • /
    • 제25권3호
    • /
    • pp.45-52
    • /
    • 2010
  • The purpose of this study is application to flame retardant powder coating(FRPC) material consisting of ammonium polyphosphate(APP) and magnesium hydroxide($Mg(OH)_2$) as a halogen free flame retardant into thermoplastic resin(LDPE-g-MAH). For improvement of adhesion, LDPE-g-MAH was synthesized from low density polyethylene(LDPE) and maleic anhydride(MAH). The mechanical properties as melt flow index, pencil hardness, cross-hatch adhesion and impact resistance of FRPC were measured. Also, the limited oxygen index(LOI) values were measured 17.3vol%, 31.1vol% and 33.7vol% for LDPE-g-MAH, FRPC-3(APP 15wt%, $Mg(OH)_2$ 15wt%) and FRPC-5(APP 30 wt%), respectively. The thermo gravimetry/differential thermal analysis(TG/DTA) of FPRC-3 was observed endothermic peak at $340^{\circ}C$ and $450^{\circ}C$, it was confirmed predominant thermal stability though the wide temperature range by APP and $Mg(OH)_2$. It was showed V-0 grade for FRPC-3 and FRPC-4(APP 20wt%, $Mg(OH)_2$ 10wt%) that a char formation and drip suppressing effect, and combustion time reduced by UL94(vertical burning test). It was confirmed that flame retardancy was improved with the synergy effect because of char formation by APP and $Mg(OH)_2$.

Research on New Nylon-6 Nanocomposites with Flame Retardancy

  • Qiao, Jinliang;Zhang, Xiaohong;Liu, Yiqun;Dong, Weifu;Wang, Qingguo;Gui, Hua;Gao, Jianming;Song, Zhihai;Lai, Jinmei;Huang, Fan
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.139-140
    • /
    • 2006
  • Some of novel halogen-free, elastomeric flame retardants for nylon-6 have been developed. It is found that the S-ENP and clay have a synergistic flame retardant effect on nylon-6 resulted from the formation of two barriers on the nanocomposite residue surface at the end of combustion. A novel flame retardant ternary nanocomposite of nylon-6/ENP/nano-Magnesium hydroxide was also fabricated. The new ternary composite has better flame retardancy and thermal stability than the conventional one because nano-MH can disperse much more homogeneous in the new ternary composite than in the conventional one.

  • PDF

전자선에 의해 제조된 나노 clay 함유 에폭시 수지의 특성 (Characterization of Epoxy Resin Containing Nano Clay Prepared by Electron Beam)

  • 박종석;이승준;임윤묵;정성린;권희정;신영민;강필현;노영창
    • 방사선산업학회지
    • /
    • 제9권1호
    • /
    • pp.9-13
    • /
    • 2015
  • Epoxy resin is widely used as aerospace, automobile, construction and electronics due to their good mechanical and electrical properties and environmental advantages. However, the inherent flammability of epoxy resin has limited its application in some field where good flame retardancy is required. Nano clay can enhance the properties of polymers such as flames retardancy and thermal stability. In this study, we have investigated the nanoclay filled epoxy composite, which has good flame retardancy while maintaining high mechanical properties. The cured epoxy resins were obtained using an electron beam curing process. The nano clays were dispersed in epoxy acrylate solution and mechanically stirred. The prepared mixtures were irradiated using an electron beam accelerator. The composites were characterized by gel content and thermal/mechanical properties. Moreover, the flammability of the composite was evaluated by limited oxygen index (LOI). The flame retardancy of nano clay filled epoxy composite was evidently improved.

Synthesis of Triazole-functionalized Phenolic Resin and its Inherent Flame Retardant Property

  • Poduval, Mithrabinda K.K.;Kim, Tae-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3249-3253
    • /
    • 2014
  • A novel triazole-functionalized phenolic resin was developed, and its thermal and flame-retardant properties were investigated. The triazole group was incorporated as a pendant unit on the phenolic resin via copper-mediated click chemistry between propargylated phenolic resin and benzyl azide. The newly-developed triazole-functionalized phenolic resin showed higher thermal stability and char yield, together with a reduced total heat release (THR), than the non-functionalized bare phenolic resin, indicating enhanced flame retardancy for the triazole-functionalized phenolic resin.