• Title/Summary/Keyword: Flame heating

Search Result 156, Processing Time 0.022 seconds

Development of Coke Breeze Combustion Technology in the Calcining Rotary Kiln (Rotary Kiln 식석회소성로에서의 분코크스 연소 기술)

  • Kim, J.G.;Cho, H.C.;Kim, Y.W.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.41-45
    • /
    • 2004
  • A dust injection system was developed for the lime calcining rotary kiln for the coke dust from the coke dry quenching(CDQ) facility to be used as a fuel. The CDQ dust was injected with the gaseous fuel through the hole in the burner. In order to prevent the spot heating large particles should be removed from dust and dust should be injected as fast as possible so that particle combustion lasts as long as possible without precipitation. This is especially necessary when dust is burned together with gaseous fuel because the gaseous fuel can not go so far and in addition dust combustion aggravates hot spot heating. In this research a rotation drum screen was used to remove particles with diameter larger than 4mm and dust injection speed was 40m/sec. And the burner was adjusted not to use swirl that hinders flame go far away. With these measures scale generation iside the kiln could be reduced to be negligible and in addition NOx emission could be reduced from 150ppm to 20ppm. The fuel reduction was about 85Mcal/T-lime.

  • PDF

A Preliminary Experimental Study on the Development of Oxy-Fuel Combustion Heating System with $CO_2$ Recycle ($CO_2$ 재순환형 산소연소 가열시스템개발에 관한 실험적 연구)

  • Lee, Eun-Kyung;Go, Chang-Bok;Jang, Byung-Lok;Han, Hyung-Kee;Noh, Dong-Soon;Jeong, Yu-Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.69-74
    • /
    • 2006
  • An Experimental study was conducted on $CO_2$ recycle combustion heating system using pure oxygen instead of conventional air as an oxidant, which is thereby producing a flue gas of mostly $CO_2$ and water vapor($H_2O$) and resulting in higher $CO_2$ concentration. The advantages of the system are not only the ability to control high temperatures characteristic of oxygen combustion with recycling $CO_2$. but also the possibility to reduce NOx emission in the flue gas. A small scale industrial reheating furnace simulator and specially designed variable flame burner were used to characterize the $CO_2$ recycle oxy-fuel combustion, such as the variations of furnace pressure, temperature and composition in the flue gas during recycle. It was found that $CO_2$ concentration in the flue gas was about 80% without $CO_2$ recycle, but increased to $90{\sim}95%$ with $CO_2$ recycle. The furnace temperature and pressure was decreased due to recycle and the NOx emission was also reduced to maintain under 100ppm.

  • PDF

A Study on Two-Dimensional Forming of Ship Hull Plate by Geometrical Approach (곡가공 공정에서 기하학적 접근법에 의한 2차원 성형에 관한 연구)

  • Seong, Woo-Jae;Ahn, Jun-Su;Kim, Hyun-Uk;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.32-37
    • /
    • 2009
  • In shipyard, plate forming is widely used to form the ship hull plate in various shapes. Line heating method by using a flame torch is one of the major shipbuilding processes carried out by skilled workers. Since the forming characteristics depend upon their experiences in manual forming, there are much variations between products and difficulties in communication between engineers and workers. Hence, it needs to develop an automatic forming system which can not only reduce the working time and rework costs but also improve the working environment and hull forming productivity. One of the final goals of plate forming automation is to form a target shape from the initial plate automatically. For automated plate forming, it is required to determine where and how to heat on the plate. To realize this procedure, the inverse problem should be first solved and the effect of curvature shape formed at the heating path should be investigated. In this study, the inverse problem was solved by geometrical approach using the relationship between bending angle and radius of curvature of the curved shape. In addition, experiments of two-dimensional plate forming were performed with the distance-based method considering the curved bending with curvature. The result of the formed shape agreed considerably well with the target shape.

Fuel Qualities and Combustion Characteristics of Animal-Fats Biodiesel for Agricultural Hot Air Heaters

  • Kim, Youngjung;Park, Seokho;Kim, Youngjin;Kim, Chungkil
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.296-301
    • /
    • 2012
  • Purpose: Combustion and fuel qualities of the animal-fats biodiesel as a heating fuel for agricultural hot air heater were studied. Methods: Biodiesel (BD) was made from animal-fats by reacting with methanol and potassium hydroxide in the laboratory. The biodiesel made in the laboratory was tested for fuel and combustion qualities. Results: The kinematic viscosity and the calorific values of the biodiesels were measured. Kerosene based biodiesel, BD20 (K) showed 18 cSt at $-20^{\circ}C$. It seemed that BD100 was not suitable for a heating fuel under some temperature. As BD content increased, the calorific value decreased up to 40,000 J/g for BD100, while the calorific value of light oil was 45,567 J/g showing difference of 5,567 J/g, about 12% difference. Several different fuels including BD20 (biodiesel 20% + light oil 80%), BD50 (biodiesel 50% + light oil 50%), BD100 (biodiesel 100%), and light oil were tested for fuel combustion qualities for agricultural hot air heater, and their combustion performances were compared and analyzed. Flame dimensions of biodiesels and light oils were almost the same shape at the same combustion condition. Generally, the $CO_2$ amounts of BDs were greater than light oil. However, in this study the differences were minor, so there was no significant difference existed between the BDs combustion and light oil. Conclusions: It seemed that quality was good for heating oil for agricultural hot air heater because of showing no barriers for continuous combustion and proper exhaust gas temperature and $CO_2$ amount discharged. But, for fuel fluidity for higher BD content fuel could be a detrimental problem in situations where the outdoor temperature is lowered. As BD content increased, calorific value decreased up to 40,000 J/g for BD100. Calorific value difference between BD20 and light oil was about 1,360 J/g.

A Study on Cold Forming of Curved Thick Plate by Reconfigurable Multi-Punch Dies (다점 펀치를 이용한 조선용 곡판 냉간 성형 방법 연구)

  • Ko, Y.H.;Han, M.S.;Han, J.M.;Kim, K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.114-117
    • /
    • 2008
  • Curved thick plate forming in shipbuilding industry is currently performed by a thermal process, called as Line Heating by using gas flame torches. It was examined as an alternative way in this study to manufacture curved thick plates by the multi-punch die forming. Experiments and finite element analyses were conducted to evaluate the feasibility of the reconfigurable discrete die forming to the thick plates. Configuration of the multi-punch dies suitable for multi-curvature was investigated. As a result, single step forming by reconfigurable discrete die with scale factor improved formability.

  • PDF

A Study on Combustion Property of Cellulose Insulation according to Particle Size (입도에 따른 셀룰로오스 단열재의 연소특성에 관한 연구)

  • Choi, Jeong-hwa;Kim, Hong;Yoo, Kyong-Ok
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.62-67
    • /
    • 1996
  • The smouldering combustion of cellulose Insulation treated with boric acid - borax - aluminium sulfate as combustion retardants are examined by candle type combustibility tester. The flammability behavior of combustion process is LOI, Smouldering region, Smouldering, Flamming spread region and Flame spread region. In this experiment, Particle size of four examined LOI, L.Point, H.Point, at the biggest size show high LOI. The surface area is connected with thermal conduction. The phenomena of combustion transition are governed by quantity of combustible gas generation in heating zone of cellulose insulation.

  • PDF

Action Plan for the Effects of Variation of Fuel Gas Composition on Domestic Gas Turbines (국내 가스터빈연소기 LNG열량변화에 따른 대응방향 연구)

  • Lee, Joongsung;Ha, Jongman;Han, Jeongok
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.115-118
    • /
    • 2014
  • Since 1st July 2012, the our Goverment and KOGAS have been adopting a calorific value range system from the standard calorific value system. Domestic power plant companies and KOGAS have asked GT manufacture about the effects of the reduction of the calorific value. We received GT manufacture's answer to the question on April 12.2011. Gas components of some GT models were limited to no more than 9% of the C2+ content. Now some of GTs remain under debating whether effects on variation of gas heating or not.

  • PDF

Gas-liquid Chromatographic Analysis of Some Tropane Alkaloids

  • Paik, Nam-Ho;Im, Yong-Bin;Park, Man-Ki
    • YAKHAK HOEJI
    • /
    • v.20 no.3
    • /
    • pp.125-129
    • /
    • 1976
  • The aim of this investigation was to develop a quantitative gas-liquid chromatographic method of analysis forhyosyamine and scopolamine, and to apply this method to the analysis of preparations. The trimethylsily(TMS) derivatives of the alkaloids were found to be far superior to the nonsilylating compounds in charomatagrams. Bis(trimethylsilyl) acetamide(BSA) was evaluated and found to be a good reagent for silyation of the alkaloids. The optimum derivatization conditions were heating the alkaloids in a closed tube at $70^{\circ)$ for 30 min with a 150 molar excess of BSA to the alkaloids were found to be alkaloids. Calibration curves for the two alkaloids were alkaloid. The standard deviations were 1.1% for hyoscyamine and 1.5% for scopolamine. The minimum detectable amount using the hydrogen flame ionization edtector was determined to be 2$\times$10$^{-11}$ moles of each alkaloid injected.

  • PDF

A Numerical Study on Interaction and Combustion of Droplets Injected into a Combustor (연소실에 분사된 액적 간의 상호작용과 연소현상에 대한 수치적 연구)

  • Kook, J.J.;Park, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.17-26
    • /
    • 1999
  • Vaporization, ignition and combustion of fuel droplets in tandem array are theoretically investigated to understand the droplet interactions in combustors. Including the effects of density variation in gas-phase, internal circulation and transient liquid heating, a numerical studies are performed by changing parameters such as initial droplet temperatures, initial droplet spacings, initial Reynolds numbers, surrounding gas temperatures, and activation energies of fuel vapors. Combustion regime maps classify the droplet combustion phenomena according to the configuration and location of the flame with respect to injection Reynolds numbers and surrounding gas temperatures. In addition, it is shown that the dynamic histories of droplets and ignition delay times are dependent on droplet size ratios and initial spacings of tandem droplets.

  • PDF

Effect of Coal Properties on Combustion Characteristics in a Pulverized Coal Fired Furnace (미분탄 연소로에서 연소특성에 미치는 석탄특성에 관한 연구)

  • Lee, Byoung-Hwa;Song, Ju-Hun;Lee, Cheon-Sung;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.737-747
    • /
    • 2009
  • This study is to investigate the effect of the moisture, volatile matter and particle size in the coal on the pulverized coal combustion characteristics using CFD. The results show that as the moisture content in coal increases, flame temperature decreases because of heat loss driven from latent heat of vaporization and reduction of heating value. As the volatile matter content in the coal increases, the temperature in the region near the burner increases, while the temperature in rear region of boiler decreases. The solution to keep the temperature in the rear region of boiler is suggested that particle size is needed to be larger. As the particle size increases, the temperature in the rear region of boiler show tendency to increase, for combustion burning time of coal could be extended.