• Title/Summary/Keyword: Flame diameter

Search Result 210, Processing Time 0.025 seconds

Numerical and Experimental Studies on the NOx Emission Characteristics of CH4-Air Coflow Jet Flames (CH4-공기 동축 제트화염의 NOx 배출특성에 관한 수치 및 실험적 연구)

  • Kim, Jong-Hyun;Oh, Chang-Bo;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1531-1541
    • /
    • 2002
  • The NOx emission characteristics of C$H_4$-Air coflow jet flames were numerically and experimentally investigated. NOx was measured using a chemiluminescent detection and calculated by the parabolic -type equation solver with a detatiled NOx chemistry. The fuel flow rate( $Q_{F}$), the diameter of mixture nozzle and the equivalence rate(Ф) were varied to discuss the EINOx of each flames at the various combustion conditions. The NOx emission index(EINOx) was introduced to quantify the NOx emission from the parametrically varied flames. The results show that Prompt EINOx increases on a logarithmic profile with increasing ${\Phi}$ and keeps nearly constant for the variation of $Q_{F}$. Thermal EINOx reaches the maximum value at around ${\Phi}$ =1.5 and then slowly decrease for ${\Phi}$ >1.5. In addition, Thermal EINOx increases with increasing $Q_{F}$, but nearly indifferent to the variation of the mixture nozzle diameter. Total EINOx also shows a peak at around ${\Phi}$ =1.5, followed by a relatively sharp decrease for 1.5< ${\Phi}$ <2.5 and increase slowly for 2.5 < ${\Phi}$ < $\infty$ The present Total EINOx trend is well explained by a combination of above Thermal and Prompt EINOx trend with the variation of ${\Phi}$ n of ${\Phi}$.

An Study on the Optimization of Sub-chamber Geometry in CVC with Sub-chamber (부실을 가진 정적연소기에서 부실형상의 최적화 연구)

  • Park, Jong-Sang;Kang, Byung-Mu;Yeum, Jung-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • An experimental study was carried out to obtain the fundamental data about the effects of radical ignition on premixture combustion. A CVC(constant volume combustor) divided into the sub-chamber and the main chamber was used. Numerous narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in tile sub-chamber derives the simultaneous multi-point ignition in the main chamber. We have examined the effects of the sub-chamber volume, the diameter and number of passage holes, and the equivalence $ratio({\Phi})$ on the combustion characteristics by means of burning pressure measurement and flame visualization. In a CVC, the overall burning time including the ignition delay became very short and the maximum burning pressure was slightly increased by the radical ignition(RI) method in comparison with those by the conventional spark ignition(SI) method. Combustible lean limit by RI method is extended by ${\Phi}=0.25$ compared with that by SI method. Also, In cases of charging the number and the diameter for the fixed total cross section of the passage holes, combustion period increased significantly at a sub-chamber with a single hole, but those of the other conditions had almost a similar tendency in the sub-chamber with 4 or more holes. regardless of equivalence ratio. Therefore, it was Proved that a critical cross section exists with the number of passage holes.

  • PDF

A Study on the Combustion Characteristics of Lean Mixture by Radicals Induced Injection in a Constant Volume Combustor (1) (정적연소기에서 라디칼 유도분사를 이용한 희박혼합기의 연소특성에 관한 연구 (1))

  • 박종상;이태원;하종률;정성식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2004
  • An experimental study was carried out to obtain the fundamental data about the effects of radicals induced injection on premixture combustion. A constant volume combustor divided to the sub-chamber and the main chamber was used. The volume of the sub-chamber is set up to occupy less than 1.5% of that of whole combustion chamber. Radial twelve narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in the sub-chamber will derive the simultaneous multi-point ignition in the main chamber. While the equivalence ratio of pre-mixture in the main chamber and the sub-chamber is uniform. We have examined the effects of the sub-chamber volume, the diameter of passage hole, and the equivalence ratio on the combustion characteristics by means of burning pressure measurement and flame visualization. In the case of radical ignition method(RI), the overall turning time including the ignition delay became very short and the maximum burning pressure was slightly increased in comparison with those of the conventional spark ignition method(SI), that is, single chamber combustion without the sub-chamber. The combustible lean limit by RI method is extended to more ER=0.25 than that by SI method. Therefore the decrease of every emission including NOx and the improvement of fuel consumption is anticipated due to lean burn.

Catalyst preparations, coating methods, and supports for micro combustor (초소형 연소기를 위한 촉매 합성, 담지방법 및 담지체)

  • Jin, Jung-Kun;Kim, Chung-Ki;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.235-241
    • /
    • 2006
  • Catalytic combustion is one of the suitable methods for micro power source due to high energy density and no flame quenching. Catalyst loading in the micro structured combustion chamber is one of the most important issues in the development of micro catalytic combustors. In this research, to coat catalyst on the chamber wall, two methods were investigated. First, $Al_2O_3$ was selected as a support of Pt and $Pt/Al_2O_3$ was synthesized through the alumina sol-gel procedure. To improve the coating thickness and adhesion between catalyst and substrate, heat resistant and water solvable organic-inorganic hybrid binder was used. Porous silicon was also investigated as a catalyst support for platinum. Through the parametric studies of current density and etching time, fabrication process of $1{\sim}2{\mu}m$ of diameter and about $25{\mu}m$ depth pores was confirmed. Coated substrates were test in the micro channel combustor which was fabricated by the wet etching and machining of SUS 304. Using $Pt/Al_2O_3$ coated substrate and Pt coated porous silicon substrate, conversion rate of fuel was over 95% for $H_2$/Air premixed gas.

  • PDF

Development of Coke Breeze Combustion Technology in the Calcining Rotary Kiln (Rotary Kiln 식석회소성로에서의 분코크스 연소 기술)

  • Kim, J.G.;Cho, H.C.;Kim, Y.W.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.41-45
    • /
    • 2004
  • A dust injection system was developed for the lime calcining rotary kiln for the coke dust from the coke dry quenching(CDQ) facility to be used as a fuel. The CDQ dust was injected with the gaseous fuel through the hole in the burner. In order to prevent the spot heating large particles should be removed from dust and dust should be injected as fast as possible so that particle combustion lasts as long as possible without precipitation. This is especially necessary when dust is burned together with gaseous fuel because the gaseous fuel can not go so far and in addition dust combustion aggravates hot spot heating. In this research a rotation drum screen was used to remove particles with diameter larger than 4mm and dust injection speed was 40m/sec. And the burner was adjusted not to use swirl that hinders flame go far away. With these measures scale generation iside the kiln could be reduced to be negligible and in addition NOx emission could be reduced from 150ppm to 20ppm. The fuel reduction was about 85Mcal/T-lime.

  • PDF

A two dimensional analysis of the evolution of the particle size distribution in particle laden high temperature jet flows including the effects of coagulation and buoyancy (입자가 부유된 고온의 제트유동에서 응집과 부력을 고려한 이차원 입자크기 분포해석)

  • Lee, Bang-Won;Choe, Man-Su;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.380-391
    • /
    • 1997
  • A numerical study has been done on the evolution of particle size distribution in particle laden high temperature jet flows undergoing convection, diffusion, thermophoresis and coagulation. The dynamic behavior of these particles have been modelled by approximating the particle size distribution by a lognormal function throughout the process and the moments of the particle size distribution have been used to solve the general dynamic equation. The size distributions of spherical particles in the radial and axial direction have been obtained including the effect of buoyancy. Of particular interests are the variations of geometric mean diameter, number concentration and polydispersity. Results show that buoyancy significantly alters the size distribution in both axial and radial direction. One dimensional analysis for non-spherical particles has also been done and the results have been compared with the existing experimental data.

Mechanical and Electrical Properties of Aluminum Wires of ACSR Conductors due to Forest Fire (산불에 노출된 강심알루미늄연선 송전선 알루미늄 선재의 기계적 및 전기적 특성 거동)

  • Lee, Won-Kyo;Lee, Jung-Won;Kim, Byung-Geol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.730-735
    • /
    • 2010
  • Forest fire can cause a serious damage to overhead conductors. Therefore, detailed investigation on the changes of mechanical and electrical properties of damaged conductors should be carried out to understand the effect of forest fires on conductors. This is of critical importance in maintaining transmission line safely. This paper examines the changes of mechanical and electrical properties of flame exposed conductor. Tensile strength (TS) decreased according to increase of forest fire temperature and conductivity changed according to forest fire temperature. Specimens were aluminum conductors of aluminium conductor steel reinforced (ACSR) 410, 240, 480 $mm^2$. In this paper, the electrical and mechanical characteristics of forest fires exposed overhead conductors depending on the diameter of aluminum conductors are presented. It was possible to estimate the degree of deterioration caused by forest fires. The detailed results are given in the paper.

Wear Properties of Thermal Sprayed Al-based Metal Matrix Composites Against Different Counterparts (용사법에 의해 제조된 $Al/Al_2O_3$ 복합재료의 상대재에 따른 마모특성)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.60-65
    • /
    • 2008
  • This study aims at investigating the wear properties of thermally sprayed $Al/Al_2O_3$ metal matrix composite(MMC) coating against different counterparts. $Al/Al_2O_3$ MMC coatings were fabricated using a flame spray system on an Al 6061 substrate. Dry sliding wear tests were performed using the sliding speeds of 0.2m/s and the applied loads of 1 and 2 N. AISI 52100, $Al_2O_3$, $Si_3N_4\;and\;ZrO_2$ balls(diameter: 8mm) were used as counterpart materials. Wear properties of $Al/Al_2O_3$ MMC coatings were analyzed using a scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDX). It was revealed that wear properties of $Al/Al_2O_3$ composite coatings were much influenced by counterpart materials. In the case of AISI 52100 used as counterparts, the wear rate of composites coating layer increased according to the increase of the applied load. On the contrary, in the case of ceramics used as counterparts, the wear rate of composites coating layer decreased according to the increase of the applied load.

  • PDF

Measurement of soot concentration in flames using laser-induced incandescence method (레이저 가열 측정법을 이용한 화염 내 매연 농도 측정)

  • Jurng, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.75-82
    • /
    • 1996
  • Laser induced incandescence, LII, recently developed technique for measuring soot concentration in flames, can overcome most of limitations of conventional laser extinction measurement. In this study, experiments were performed to investigate the effect of laser intensity, detection wavelength, and also laser beam quality on both LII signal at a particular position and peak-to-centerline LII signal ratio. The results of LII signal with increasing laser intensity shows its near-independence of laser intensity once threshold level of laser intensity has been reached. However, this near-independence depends on laser beam quality and the incident optical setup. The peak-to-centerline LII signal ratio slowly but continuously increases with laser power. This fact is due to the dependence of LII signal on particle mean diameter. LII signal is attenuated during it passes through the flame containing soot particles. The attenuation rate is inversely proportional to detection wavelength. In this study, LII signal at 680 nm band is 10% greater than the signal at 400 nm band.

  • PDF

An Experimental Study on the Drop Size and the Combustion Characteristics around the Bluff-body (보염기 주위의 연료액적크기와 연소특성에 관한 실험적 연구)

  • Hwang, S.H.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.3
    • /
    • pp.41-48
    • /
    • 2003
  • This work was performed to investigate the distribution of the fuel droplet size around the bluff-body and the combustion characteristics. The bluff-body is used fur the purpose of increasing the combustion efficiency by stabilizing the flame. Diameters of the bluff-body in this experiment are 6, 8, and 10mm and the impingement angles are $30^{\circ},\;60^{\circ}\;and\;90^{\circ}$. The measurement points were at the distances of 20 and 30 mm axially from the nozzle. The geometry of the bluff-body influenced the spray shape and the combustion characteristics. The SMD was acquired by image processing technique (PMAS), and the mean temperatures were measured by thermocouple. In the condition of ${\theta}=60^{\circ}$, the values of SMD are not greatly varied compared to the other conditions. As the angle of bluff-body was increased, the high temperature region was wider along radial direction. When the air-fuel ratio was larger than 5.2, the NOx concentration was decreased, and an increase in the diameter of the bluff-body decreased the NOx of emission.

  • PDF