• Title/Summary/Keyword: Flame Time

Search Result 712, Processing Time 0.036 seconds

A Study on the Combustion Characteristics of Turbulent Diffusion Flame Stabilized by Bluff Body (보염기에 의해 안정되는 난류확산화염의 연소특성에 관한 연구)

  • An, J.G.;Song, K.K.
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.71-78
    • /
    • 1998
  • The flame stabilization and the combustion characteristics of diffusion flame formed in the wake of a cylindrical bluff body with fuel injection are studied. With the turbulence generator, the flame stability limits and ion currents were measured and analyzed. The results from this experimental study are summarized as follows. The region with highest average value of ion currents in the middle of flame is moved to the upstream side by the turbulent components of main stream. The flame mass with partially active reaction is moved fast for uniform flow and turbulence generator G3, but the flame mass with relatively slow reaction is moved slowly for turbulence generator G1. If the turbulence generator with strong turbulent component is installed, the turbulent time scale is increased with movement from main stream side to recirculation zone as well as the flame stability limits is deteriorated. Though the special dominant frequency is not appeared in the eddy which exists in flame, high frequency characteristics are appeared in uniform flow and turbulence generator G3, and low frequency characteristics are appeared in uniform flow, turbulence generator G3 and G1.

  • PDF

A Study on In-Cylinder Measurement of Flame Temperature and Soot Distribution in D.I. Diesel Engine Using Tow-Color Method (이색법을 이용한 직접 분사식 디젤엔진 실린더내의 화염 분도 및 Soot 분포 측정에 관한 연구)

  • 박정규;정수훈;원영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.42-53
    • /
    • 1999
  • Two dimensional flame temperature and KL value distribution from the luminous flame containing soot in a DI diesel engine were measured by the tow-color method using tow different wavelengths of the flame image. The combustion chamber of a DI diesel engine was visualized by elongating the piston and cylinder and the flame in the combustion chamber was photographed on a nega-color film using a high speed camera. In this study, color CCD camera was used to digitize the three color density of the film exposed to the flame and standard lamp . The accuracy of the measuring method depends on the calibration line of film made from a high temperature standard tungsten lamp. The formation and oxidization of soot in the diesel engine were studied by observing measured time history of KL factor and flame temperature . Also , effects of various shapes of combustion chamber and fuel injection on flame temperature. Also, effects of various shapes of combustion chamber and fuel injection on flame temperature and KL value distribution were examined.

  • PDF

Properties of Explosion and Flame Velocity with Content Ratio in Mg-Al Alloy Particles (마그네슘합금의 조성비율에 따른 폭발 및 화염전파 특성)

  • Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.32-37
    • /
    • 2012
  • The aim of this study is to evaluate the characteristics of explosion and flame velocity that can be utilized to factories where Mg-Al alloy metal powders are handled in the form of raw materials, products or by-product for similar dust explosion prevention and mitigation. Because the strength of the blast pressure is the result due to flame propagation, flame velocity in dust explosion can be utilized as a valuable information for damage prediction. An experimental investigation was carried out on the influences of content ratio of Mg-Al alloy (mean particle size distribution of 151 to 161 ${\mu}m$). And a model of flame propagation velocity based on the time to peak pressure and flame arrival time in dust explosion pressure, assuming the constant burning velocity, leads to a representation of flame velocity during dust explosion. As the results, the maximum flame velocity of Mg-Al(60:40 wt%), Mg-Al(50:50 wt%) and Mg-Al(40:60 wt%) was estimated 15.5, 18 and 15.2 m/s respectively, and also tend to change with content ratio of Mg-Al.

A Study on the Effects of Ignition Systems on the Heat Release Rate and Mass Fraction Burnt at a Constant Volume Combustion Chamber (정적연소기에서 점화장치가 열발생률과 잘량연소율에 미치는 영향에 관한 연구)

  • Song, Jeong-Hun;Lee, Gi-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1486-1496
    • /
    • 2000
  • The initial flame kernel development and flame propagation in a constant volume combustion chamber is analyzed by the heat release rate and the mass fraction burnt. The combustion pressure is measured with a piezoelectric type pressure sensor. In order to evaluate the effects of ignition system and ignition energy on the flame propagation, four different ignition systems are designed and tested, and the ignition energy is varied by the dwell time. Several different spark plugs are also tested and examined to analysis the effects of electrodes on flame kernel development. The results show that the when the dwell time is increased, and when the spark plug gap is extended, heat release rate and the mass burnt fraction are increased. The materials and shapes of electrodes affect the flame development, because they change the energy transfer efficiency from electrical energy to chemical energy. The diameter of electrodes influences not only the heat release rate but also the mass burnt fraction as well.

Eloctrostatic Electrification Properties of Silicone Rubber in the Presence of Pt Flame Retardant (백금 난연제에 의한 실리콘 고무의 정전기 대전 특성)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.494-498
    • /
    • 2022
  • In this study, SiO2 20 phr, ATH 70 phr, and platinum flame retardant were mixed with raw silicone rubber and -10 kV was applied to measure electrostatic charge attenuation voltage, surface resistance, and volume resistance, and the following conclusions were obtained. When the platinum flame retardant was 0 phr, the humidity 74.6% and the temperature was 21.8℃, the potential was half-reduced to 0.63 kV, 0.57 kV, and 0.44 kV when the applied voltage was changed from -10 kV to -8 kV, and the time halved to 50% was increased to 2.40 seconds, 2.47 seconds, and 2.61 seconds. It was confirmed that as the platinum flame retardant increased from 0.1 to 0.3 phr, the potential half-reduced to 0.67 kV, 0.60 kV, and 0.595 kV decreased, and the charge potential attenuation time half-reduced to 50% decreased to 3.44 seconds, 1.78 seconds, and 1.60 seconds. It was confirmed that the surface resistance increased as the humidity decreased, and the volume resistance decreased as the platinum flame retardant increased.

Study on Soot Primary Particle Size Measurement in Ethylene Diffusion Flame by Time-Resolved Laser-Induced Incandescence (시분해 레이저 유도 백열법을 이용한 에틸렌 확산 화염에서의 매연 일차입자크기 측정에 관한 연구)

  • Kim Gyu-Bo;Cho Seung-Wan;Lee Jong-Ho;Jeong Dong-Soo;Chang Young-June;Jeon Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.973-981
    • /
    • 2006
  • Recently there is an increasing interest in particulate matter emission because of new emission regulations, health awareness and environmental problems. It requires to improve particulate measurement techniques as well as to reduce soot emissions from combustion systems. As mentioned above, it is demanded that reduction techniques together with measurement techniques of exhausted particulate matters in combustion systems such as vehicles. However, measurement techniques of particulate matters should be prior to reduction techniques of that because it is able to know an increase and a decrease of exhausted particulate matters when measured particulate matters. Therefore, in this study, we report the measurement of soot primary-particle size using time-resolved laser induced incandescence (TIRE-LII) technique in laminar ethylene diffusion flame. As an optical method, laser induced incandescence is one of well known methods to get information for spatial and temporal soot volume fraction and soot primary particle size. Furthermore, TIRE-LII is able to measure soot primary particle size that is decided to solve the decay ate of signal S $(t_1)$ and S $(t_2)$ at two detection time. In laminar ethylene diffusion flame, visual flame height is 40 mm from burner tip and measurement points are height of 15, 20, 27.5, 30 mm above burner tip along radial direction. As increasing the height of the flame from burne. tip, primary particle size was increased to HAB(Height Above Burner tip)=20mm, and then decreased from HAB=27.5 mm to 30 mm. This results show the growth and oxidation processes for soot particles formed by combustion.

Predicting of Fire Characteristics of Flame Retardant Treated Douglas fir Using an Integral Model (적분모델을 이용한 난연처리된 Douglas fir의 화재특성 예측)

  • Park, Hyung-Ju;Kim, Hong;Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.98-104
    • /
    • 2005
  • This study experimentally and theoretically examines the fire characteristics of 100- by 100- by 50-mm samples of flame retardant treated Douglas fir. Samples were exposed to a range of incident heat fluxes 10 to $50kW/m^2$. The time to ignition measurements obtained from the cone heater were used to derive characteristic properties of the materials. A one-dimensional integral model has been used to predict the, time to ignition, critical heat flux and ignition temperature of samples. Ignition data and best-fit curves confirm ${{\dot{q}}_i}^{'}{\rightarrow}{{\dot{q}}_{cr}^{'}\;then\;t_{ig}{\rightarrow}{\infty}$ and when ${{\dot{q}}_i}^'{\gg}{{\dot{q}}_{cr}^'\;then\;t_{ig}{\rightarrow}0$. And Ignition of flame retardant treated samples occurred not at incident heat flux of bellow $10kW/m^2.$. By a one-dimensional integral model, the critical heat flux of each samples was predicted $10.21kW/m^2,\;11.82kW/m^2,\;and\;14.16kW/m^2$ for the D-N, D-F2, and D-F4, respectively. In ignition temperature of each samples, flame retardant treated samples were measured high about $50^{\circ}C$ than non-treated samples. Water-soluble flame retardant used in this study finds out more effect in delay of time to ignition when incident heat flux is low than high.

An experimental study on the instability of lean premixed turbulent combustion induced by thermo-acoustics (열-음향에 의한 난류희박 예혼합연소의 불안정성에 관한 실험적 연구)

  • Hong, Jung-Goo;Lee, Min-Chul;Shin, Hyun-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1166-1171
    • /
    • 2004
  • The combustion instability acts as a serious obstacle for the lean premixed combustion of gas turbine and even causes the fatal damage to the combustor and whole system. In this experiment, the pressure fluctuation is highly related to the stabilizing position of flame and fuel injection location. The fuel injection location is connected with the convection time of the fresh mixture, which is important time scale to refresh the mixtures near the flame stabilization location. The flame is extremely unstable when the alternative stabilization occurs and bulk mode frequency (${\sim}10Hz$) of pressure fluctuation is observed in this condition. It was found that the convection time scale of the fresh reactant coincided with the time scale of the bulk mode fluctuation. Hence this phenomenon results from the local equivalence ratio change caused by the pressure fluctuation induced by thermo-acoustic effects.

  • PDF

An Experimental Study on Flame Spread in an One-Dimensional Droplet Array (일차원 액적 배열하에서 화염 퍼짐에 관한 실험적 연구)

  • Park, Jeong;Shin, Hyun Dong;Kobayashi, Hideaki;Niioka, Takashi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.131-139
    • /
    • 1999
  • Experimental investigations on flame spread in droplet arrays have been conducted under supercritical ambient pressures of fuel droplet. Flame spread rates are measured for n-Decane droplet of diameters of 0.75 and 1.0mm, using high speed images of OH chemiluminescence up to 3.0MPa. The pattern of flame spread is categorized into two: a continuous mode and an intermittent one. There exists a limit droplet spacing, above which flame spread does not occur. Flame spread rate with the decrease of droplet spacing increases and then decreases after takin& a maximum. It is also seen that there exists a limit ambient pressure, above which flame spread does not occur. Flame spread rate decreases monotonically with the increase of ambient pressure. Exceptionally, In the case of a small droplet spacing, flame spread with the increase of ambient pressure is extended to supercritical pressures of fuel droplet. This is caused by enhanced vaporization with the increase of ambient pressure. Consequently, in flame spread with droplet droplet spacing, the relative position of flame to droplet spacing plays an important role. The monotonic decrease with ambient pressure is mainly related to the reduction of flame radius in subcritical pressures and the extension to supercritical pressures of flame spread is caused by the reduction of ignition time of unburnt droplet due to the enhanced vaporization at supercritical pressures.

Experimental Study on the Effect of a Metal Storage Cask and Openings on Flame Temperature in a Compartment Fire

  • Bang, Kyoung-Sik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.395-405
    • /
    • 2020
  • Compartment fire tests were performed using kerosene and Jet A-1 as fire sources to evaluate the relationship between flame temperature and opening size. The tests were performed for a fire caused by the release of kerosene owing to vehicle impact, and for a fire caused by the release of Jet-A-1 owing to airplane collision. The compartment fire tests were performed using a 1/3-scale model of a metal storage cask when the flame temperature was deemed to be the highest. We found the combustion time of Jet-A-1 to be shorter than that of kerosene, and consequently, the flame temperature of Jet-A-1 was measured to be higher than that of kerosene. When the opening was installed on the compartment roof, even though the area of the opening was small, the ventilation factor was large, resulting in a high flame temperature and long combustion. Therefore, the position of the opening is a crucial factor that affects the flame temperature. When the metal storage cask was stored in the compartment, the flame temperature decreased proportionally with the energy that the metal storage cask received from the flame.