• Title/Summary/Keyword: Flame Retardant

Search Result 456, Processing Time 0.028 seconds

Eloctrostatic Electrification Properties of Silicone Rubber in the Presence of Pt Flame Retardant (백금 난연제에 의한 실리콘 고무의 정전기 대전 특성)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.494-498
    • /
    • 2022
  • In this study, SiO2 20 phr, ATH 70 phr, and platinum flame retardant were mixed with raw silicone rubber and -10 kV was applied to measure electrostatic charge attenuation voltage, surface resistance, and volume resistance, and the following conclusions were obtained. When the platinum flame retardant was 0 phr, the humidity 74.6% and the temperature was 21.8℃, the potential was half-reduced to 0.63 kV, 0.57 kV, and 0.44 kV when the applied voltage was changed from -10 kV to -8 kV, and the time halved to 50% was increased to 2.40 seconds, 2.47 seconds, and 2.61 seconds. It was confirmed that as the platinum flame retardant increased from 0.1 to 0.3 phr, the potential half-reduced to 0.67 kV, 0.60 kV, and 0.595 kV decreased, and the charge potential attenuation time half-reduced to 50% decreased to 3.44 seconds, 1.78 seconds, and 1.60 seconds. It was confirmed that the surface resistance increased as the humidity decreased, and the volume resistance decreased as the platinum flame retardant increased.

Dual-curable Flame-Retardant Finish of Silk Fabrics Using a Water-soluble Cyclophosphazene Derivative (수용성 Cyclcophosphazene 유도체를 이용한 견섬유의 이중경화형 방염가공)

  • Kim, Jeong-Hwan;Baek, Ji-Yun;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.217-223
    • /
    • 2022
  • Flame-retardant finished silk fabrics could release carcinogenic formaldehyde resulting from the conventional finishing agents. New water-soluble cyclophosphazene derivative can be used as a formaldehyde-free flame retardant for the silk protein. Dichloro tetrakis{N-[3-dimethylamino)propyl]methacrylamido}cyclophosphazene(DCTDCP) can be cured by heat or UV irradiation as a durable flame retardant for the silk fabrics. Treatment conditions were optimized including curing temperature and time, finishing formulations, and UV energy. At the 30% DCTDCP application, peak HRR and THR decreased by 42.6% and 49.6% respectively compared to the pristine silk fabrics. Also char residue increased up to 48% from 11% indicating solid-phase retarding mechanism. The flame-retardant silk fabrics showed a LOI of 31.1 and the washed sample maintained a LOI of 26.8 even after ten laundering cycles.

Flame Retardant Finish of PET fabrics with Bis-(p-bromophenyl) phosphate (Bis-(p-bromophenyl)phosphate에 의한 PET 직물의 방염가공)

  • Cho, Hwan;Choi, Chang-Ho;Lee, Kwang-Woo;Cho, In-Sool;Kim, Soo-Chang;Heo, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.2 no.4
    • /
    • pp.251-256
    • /
    • 1990
  • Bis-(p-bromopheny)phosphate(BBPP) , which serves as flame retardant for PET fabric, was synthesized from phenol and phosphorus oxychloride, and from bromine. In order to investigate the flame retardancy of BBPP, PET fabrics were steam-cured with diluted BBPP solution. The following conclusions were drawn : 1. Flame retardancy of PET fabrics treated with BBPP was excellent, and optimal treating condition was 10% concentration of flame retardant at $170^{\circ]C$ 2. Clark softness and tensile strength before and after the laundering of PET fabrics treated with flame retardant remained nearly unchanged.

  • PDF

Preparation and Flame-Retardant Optimization of PU Coatings Using Pyrophosphoric Modified Polyester/HDI-Biuret (피로포스포릭 변성폴리에스테르/HDI-Biuret에 의한 PU 난연도료의 제조 및 난연최적화)

  • Shin, Dong-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.110-117
    • /
    • 2003
  • Pyrophosphoric modified polyesters (TATBs) were synthesized by polycondensation of adipic acid, trimethylolpropane, 1,4-butanediol, and tetramethylene bis(orthophosphate). Two-component PU flame-retardant coatings (TATBCs) were prepared by blending TATBs with HDI-Biuret. Most of the physical properties of the flame-retardant coatings were comparable to those of non-flame-retardant coatings. Coatings containing 10 and 15wt% 1,4-butanediol, TATBC-10C and TATBC-15C were not flammable in the vertical flame-retardancy test.

Physical Properties and Flame Retardant Effects of Polyurethane Coatings Containing Pyrophosphoric Lactone Modified Polyesters (피로포스포릭 락톤 변성폴리에스테르를 함유한 폴리우레탄 난연도료의 물성 및 난연효과)

  • Jung, Choong-Ho;Choi, Yong-Ho;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.203-211
    • /
    • 2000
  • Pyrophosphoric lactone modified polyester(PATT) that contains two phosphorous functional groups in one unit base resin structure was synthesized to prepare a non-toxic reactive flame retardant coatings. Then the PATT was cured at room temperature with isocyanate, Desmodur IL, to get a two-component polyurethane flame retardant coatings(PIPUC). Comparing the physical properties of the films of PIPUC with the film of non-flame retardant coatings, there was no degradation observed in physical properties by the introduction of a flame-retarding component into the resin. We found that the char lengths measured by $45^{\circ}$Meckel burner method were $3.1{\sim}4.4cm$ and LOI values recorded $27{\sim}30%$. These results indicate that the coatings prepared in this study is good flame retardant one. The surface structure of coatings investigated with SEM does not show any defects and phase separation.

Synthesis of Triazole-functionalized Phenolic Resin and its Inherent Flame Retardant Property

  • Poduval, Mithrabinda K.K.;Kim, Tae-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3249-3253
    • /
    • 2014
  • A novel triazole-functionalized phenolic resin was developed, and its thermal and flame-retardant properties were investigated. The triazole group was incorporated as a pendant unit on the phenolic resin via copper-mediated click chemistry between propargylated phenolic resin and benzyl azide. The newly-developed triazole-functionalized phenolic resin showed higher thermal stability and char yield, together with a reduced total heat release (THR), than the non-functionalized bare phenolic resin, indicating enhanced flame retardancy for the triazole-functionalized phenolic resin.

Synthesis and Characterization of PU Flame-Retardant Coatings Using Tribromo Modified Polyesters (트리브로모 변성폴리에스테르를 함유한 PU 난연도료의 합성과 도막 특성화)

  • 박은경;양인모;김대원;황규현;박홍수
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.391-398
    • /
    • 2001
  • Two-component polyurethane (PU) flame-retardant coatings were prepared by blending tribromo modified polyesters ($TBAO_s$) and isocyanate.$TBAO_s$ were synthesized by condensation polymerization of tribromoacetic acid, a flame-retardant component, with 1,4-butanediol, adipic acid, and trimethylolpropane. The content of tribromoacetic acid was varied by 10, 20, and 30 wt% for the reaction. Various physical properties of these new flame-retardant coatings were comparable to nonflame-retardant coatings. Coatings with 20 wt% tribromoacetic acid did not burn during the vertical burning test.

  • PDF

Study on the Smoke Density Characteristics of Flame Retardant Sol Manufactured by a Sol-gel Method (졸-겔법으로 제조된 방염제졸의 연기밀도 특성에 관한 연구)

  • Cho, Kyeong-Rae;Lee, Chun-Ha;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.11-18
    • /
    • 2017
  • In this study, a non-halogen type organic-inorganic hybrid flame retardant sol, which can impart flame resistance to synthesize silicate of inorganic material and silane coupling agent of organic material by a sol-gel method, were newly manufactured. The addition of flame retardant will prevent loss of life in a fire because smoke from the flammability of interior finishing materials used as the construction materials poses a major danger. The smoke density measurement standard based on flame retardant performance standards, experiments were conducted according to the test equipment and procedures of ASTM E 662. The non-flaming mode experiment and the flaming mode experiment were conducted to confirm the performance of the manufactured flame retardant sol. As a result, the manufactured flame retardant sol improved the physical properties and heat resistance of existing flame retardants, and decreased the smoke production of the fire. Therefore, it may be possible to reduce the damage caused by smoke and expand the applications to various interior finishing materials.

Study on the Excellent Heat Resistance Organic-Inorganic Hybrid Flame Retardant (내열성이 우수한 유-무기 하이브리드 방염제에 관한 연구)

  • Cho, Kyeong-Rae;Lee, Sung-Eun;Lee, Chun-Ha;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.67-72
    • /
    • 2016
  • The development of flame retardants aims to prevent the spread of fire and reduce the casualties caused by flammable and toxic gases generated during the combustion of building materials used in the interiors of multi-use facilities. Flame material application provides flame resistance to a silica sol in an organic-inorganic hybrid material by flame retardant adhesive or coating by producing a sol-gel method. The conventional flame retardant materials, non-flame retardant material is applied with Halogen freeway. In particular, the basic physical properties of conventional adhesive coating improves the heat resistance, enhances the durability fire and heat, and expands the halogen free flame retardant of building materials.

Mechanical Properties and Flame Retardancy of Rigid Polyurethane Foam Using New Phosphorus Flame Retardant (새로운 인계 난연제 합성과 이를 이용한 경질 폴리우레탄 폼의 난연성 및 물성 분석)

  • Lee, Byoung Jun;Kim, Sang Bum
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.577-582
    • /
    • 2016
  • In this study, we compared and analyzed the flame retardancy and mechanical properties of three different rigid polyurethane foams (RPUF) containing noble non-halogen phosphorus flame retardant (BHP-RPUF) or halogen-phosphorus flame retardant (TCPP-RPUF) or no flame retardant material (Pure-RPUF). The noble phosphorus-based flame retardant, bis(3-(3-hydroxypropoxy)propyl) phenyl phosphate (BHP), was synthesized by the reaction between disodium phenyl phosphate and 3-chloro-1-propanol. Through universal testing machine (UTM) experiments, the compressive strength of BHP-RPUF was similar to that of TCPP-RPUF. From the result of foam morphology analysis, it was confirmed that BHP-RPUF has the lowest thermal conductivity of $0.023W/m{\cdot}K$. We also measured the size of air bubbles using reaction velocity and SEM, and analyzed how they affect the thermal conductivity. In addition, the heat-resisting property was investigated through TGA analysis. The limited oxygen index (LOI) test confirmed that BHP had the ability to increase the flame retardancy of RPUF.