• Title/Summary/Keyword: Flame Holder

Search Result 54, Processing Time 0.025 seconds

Experimental Study on Upstream Fueled Cavity Flame-Holder Scramjet Engine (상류 분사 공동 화염 지지부를 가지는 스크램제트 엔진에 관한 실험적 연구)

  • Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P.;Jeong, Eun-Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.197-204
    • /
    • 2006
  • The model cavity scramjet engine experiments are carried out using T3 free-piston shock tunnel. Upstream hydrogen fuel is injected before the cavity with different injection pressure. OH planar laser-induced fluorescence is used to investigate the combustion zone and piezoelectric pressure transducers are used to define the pressure rise due to the combustion. Main combustion region is a mixing layer which is between air and fuel. Also high OH fluorescence signal is appeared in the shear layer above the cavity in high equivalence ratio. From the OH signal in the cavity, this fuel injection system can be a role as a flame- holder.

  • PDF

Large Eddy Simulation of turbulent flow around a bluff body inside a sudden expansion cylindrical chamber (급 확대부를 갖는 실린더 챔버 내부의 둔각물체 주위 유동에 관한 대 와동 모사)

  • 최창용;고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.98-108
    • /
    • 2004
  • This study concerns a large eddy simulation (LES) of turbulent flow around a bluff body inside a sudden expansion cylindrical chamber, a configuration which resembles a premixed gas turbine combustor The simulation code is constructed by using the general coordinate system based on the physical contravariant velocity components. The Smagorinsky model is employed and the calculated Reynolds number is 5,000 based on the bulk velocity and the diameter of the inlet pipe. The combined grid technique and cylindrical grid are tested in the numerical simulation with complex geometry. The predicted turbulent statistics are evaluated by comparing with LDV measurement data. The numerical flow visualizations depict the behavior of turbulent mixing process behind the flame holder.

Application of G-equation to large eddy simulation of turbulent premixed flame around a bluff body inside a cylindrical chamber (G 방정식을 이용한 실린더 챔버 내부 둔각물체 주위의 난류 예 혼합 화염 해석)

  • Choi Chang-Yong;Park Nam-Seob;Ko Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.391-398
    • /
    • 2005
  • In this investigation, turbulent premixed combustion and flame front propagation in a gas turbine combustion chamber is studied. Direct numerical simulation of turbulent reacting flows demands extremely high computational resources, especially in more complicated geometry. The alternative choice may be left for Large Eddy Simulation (LES) by which only large scales are solved directly. In combustion problems, capturing the large scales' behavior without solving the details of small scales is a difficult task. Using a transport equation for description of the flame front propagation and therefore avoiding the calculation of inner flame structure is the basic idea of this study. For this purpose. the so-called G-equation has been used by which any iso-level of the G variable provides the flame location. A comparison with the experiment indicates that the present method can predict a turbulent velocity field and also capture a instantaneous 3-dimensional flame structure.

An Experimental Study on the Characteristic of Sprays and Spray Flames by Twin-Fluid Atomizer (2유체 분사노즐을 이용한 분무 및 연소특성에 관한 실험적 연구)

  • 백민수;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.548-558
    • /
    • 1995
  • An experimental investigation has been conducted to study the spray and combustion characteristics using the air-assisted twin fluid atomizer. Axial mean and fluctuating velocity components as well as drop-size distributions in non-reaction spray were measured with a nonintrusive phase doppler technique. Droplet number density distributions were also visualized using high speed CCD camera. Locations of spray and flame boundaries are obtained by direct photographic method. It is confirmed that at the fixed fuel flow rate, the increase of the atomizing air flow causes improvements on both spray and combustion characteristics under stable flame conditions. Internal group combustion modes where flame is located inside the spray boundary are observed to exist in the upstream region of higher droplet number density.

Reduction of combustion instability using flame holder integrated injector (통합형 연료분사장치를 통한 연소불안정 저감)

  • Hwang, Yong-Seok;Lee, Jong-Guen;Park, Ik-Soo;Choi, Ho-Jin;Jin, Yu-In;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.432-437
    • /
    • 2010
  • A new device injecting secondary fuel behind flameholder was invented and tested in order to reduce low frequency combustion instability of combustor using V-gutter flameholder. Specially designed combustion device could make large combustion instability up to 180 dB successfully, and newly invented device made a success to reduce 110~120Hz low frequency pressure pulsation up to 84%. It was found that the fuel flow rate of secondary fuel supplying behind flameholder was the only parameter which dominates reduction of instability. It is considered that stabilized flame with sufficient secondary fuel can lead to break the connection between combustion system and acoustic system due to independence of flame from fluctuation of main fuel resulted from synchronization with acoustic wave.

  • PDF

Numerical Simulation Study on Combustion Characteristics of Hypersonic Model SCRamjet Combustor

  • Won, Su-Hee;Eunju Jeong;Jeung, In-Seuck;Park, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.42-47
    • /
    • 2004
  • Air-fuel mixing and flame-holding are two important factors that have to be considered in the design of an injection system. Different injection strategies have been proposed with particular concern for rapid air-fuel mixing and flame-holding. Two representative injection techniques can be applied in a supersonic combustor. One of the simplest approaches is a transverse(normal) injection. The cavity flame holder, an integrated fuel injection/flame-holding approach, has been proposed as a new concept for flame holding and air-fuel mixing in a supersonic combustor. This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of a model scramjet engine combustor, where hydrogen is injected into a supersonic cross flow and a cavity. The combustion phenomena in a model scramjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, were observed around the separation region of the transverse injector upstream and the inside cavity. The results show that this flow separation generates recirculation regions which increase air-fuel mixing. Self-ignition occurs in the separation-freestream and cavity-fteestream interfaces.

  • PDF

Review of the Flame Stabilization Techniques using Cavity (Cavity를 이용한 화염안정화 기술 리뷰)

  • Lee, Tae Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.104-111
    • /
    • 2016
  • The flame stabilization is one of the topics which have to be solved for the airbreathing propulsion systems, using the entering air which is supersonic velocity as an oxygen sources. Making a recirculation zone with an eddy flow, installed the reducing velocity devices such as the bluff body, is the typical method of the flame stabilization. Recently using a cavity flame stabilization at the wall is an emerging technique as an effective method which extends the stabilization zone, and the related research papers have been published on the flow separation and reattachment, pressures and oscillations including length/depth ratios in the cavities. Even though, still there are lots of topics to study more in the cavity flame stabilization field as the preceding techniques, as well as the research and the development of the airbreathing propulsion system itself.

An investigation of autoignition characteristics of kerosene by decomposed hydrogen peroxide (분해된 과산화수소를 이용한 케로신의 자연점화특성 조사)

  • Jo, Sung-Kwon;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.397-400
    • /
    • 2008
  • Traditional propellants which have a hypergolic characteristic have a high performance but also have disadvantages of toxicity and complex handling requirement. In order to replace these propellants, one of the alternatives is hydrogen peroxide which generates high temperature oxygen and water vapor after catalytic reaction. In this paper, autoignition characteristics of kerosene by decomposed hydrogen peroxide were investigated to perform fundamental research for designing a thruster using hydrogen peroxide and kerosene propellants. Contraction ratio, whether flame holder exists or not, and feeding pressure of propellants were selected as variables. From the experiments for different mixture ratio, we confirmed the ignition stability is strongly affected by a feeding pressure of propellants.

  • PDF

Combustion Characteristics Based on Injector Shape of Supersonic Combustor (초음속 연소기의 인젝터 형상에 따른 연소특성)

  • Jin, Sangwook;Choi, Hojin;Lee, Hyung Ju;Byun, Jong-Ryul;Bae, Juhyun;Park, Dongchang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.76-87
    • /
    • 2019
  • A direct connected test was conducted for a supersonic combustor with a cavity-type flame holder. Liquid hydro-carbon fuel was injected in different types of injectors: inclined and aeroramp injectors, for the flow condition of Mach 4 at an altitude of 20 km. The static pressure on the combustor wall along the axis and the total pressure at the exit of combustor were measured to analyze the combustion characteristics at various fuel flow rates.

Evaluation of Turbulent Flame Speed Model for Turbulent Premixed Combustion Flow around Bluff Body (보염기 주위의 난류 예혼합 연소에 관한 난류화염 속도 모델의 평가)

  • Park, Nam-Seob;Ko, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.82-88
    • /
    • 2011
  • The objective of this study is to investigate the validity of the dynamic sub-grid G-equation model to a complex turbulent premixed combustion such as bluff body stabilized turbulent premixed flames for the considering of the realistic engineering application. In this study, a new turbulent flame speed model, introduced by the sub-grid turbulent diffusivity and the flame thickness, is also proposed and is compared with an usual model using sub-grid turbulent intensity and with the experimental data. The calculated results can predict the velocity and temperature of the combustion flow in good agreement with the experiment data.