• Title/Summary/Keyword: Flame Front

Search Result 138, Processing Time 0.021 seconds

Weed Control by Flame (화염을 이용한 잡초방제 연구)

  • 姜和錫;文學洙
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.331-336
    • /
    • 2001
  • This study was to develop a kerosene flame weeder. An air compressor was driven though the PTO of a tractor to provide necessary air for fuel combustion and proper pressure to supply fuel from fuel tank to the nozzle. It was found that the flame was extinguished very easily by wind and vibration of the tractor. This trouble could be solved by attaching a burner cap, which is a modified venturi tube, at the end of the nozzle. The constructed flame weeder was tested for the weeding capability in the prepared field. Weed extinction rate and weight decrease rate were analysed. Measured maximum flame temperature was 1,121$\^{C}$ when the fuel consumption was 13.41 kg/h and fuel supply pressure was 88.2 kPa. The maximum temperature occurred at 20cm from the front end the burner, and it decreased to 46$\^{C}$ as the distance increased to 110cm. The flame length of up to 70cm, where the flame temperature was higher than 372$\^{C}$, would be used for weeding purpose. Weed extinction rate and weight decreasing rate increased as the fuel consumption increased. The flame weeder was evaluated to be a practical weeder through improvement as the weed extinction rate and weight decrease rate were analysed to be 75% and 85%, respectively when the fuel consumption was 116.87kg/ha.

  • PDF

A Study on the Flame Structure and NOx Distribution In Coaxial Diffusion Combustor (동축확산연소기 화염구조와 NOx 분포에 관한 연구)

  • Kim, K.S.;Lee, W.S.;Kang, I.G.;Lee, D.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.35-41
    • /
    • 1999
  • The purpose of this study is to establish the flame structure and NOx emission characteristics of the swirl flow coaxial diffusion combustion in the model gas turbine combustor. The mean temperature, ion currents and NOx emission measurement technique showed the effect of equivalence ratio into flame length and flame stability. As a result of this study, NOx emission was increased by increasing the equivalence ratio, and the peak value of the NOx was appeared near the flame front.

  • PDF

Flame Synthesis of Carbon Nanofibers using SUS304 Substrates (촉매금속 기판을 사용한 탄소나노섬유의 화염합성)

  • Lee, Gyo-Woo;Jurng, Jong-Soo;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.50-55
    • /
    • 2003
  • Synthesis of carbon nanofibers on a metal substrate by an ethylene fueled inverse diffusion flame was observed. Stainless steel plates were used for the catalytic metal substrate. The effects of radial distance and residence time of the substrate were investigated. The role of hydrocarbon composition in the fuel was also viewed. Nanofibers with a diameter range of 30-70nm were found on the substrate. The carbon nanofibers were formed and grown in the region from 4 to 5.5mm from the central axis of a flame outside of the visible flame front in the radial direction. The minimum residence time required for the formation of carbon nanofibers were about 20 seconds, and over 60 seconds were required for the full-scale growth. The characteristic time of the formation of carbon nanofibers was much shorter than that of the substrate temperature growth. In this study, the variation in hydrocarbon composition had no significant effect on the formation and growth of the carbon nanofibers.

  • PDF

A Study on Measurement of NO Concentrations in Burner Flames by LIF (레이저 유도 형광법(LIF)을 이용한 버너 화염의 NO 농도측정에 관한 연구)

  • Park, K.S.;Kim, S.W.
    • Journal of ILASS-Korea
    • /
    • v.7 no.4
    • /
    • pp.42-49
    • /
    • 2002
  • In this study, quantitative measurement of nitric oxide concentration distributions were investigated in the laminar CH4/O2/N2 premixed flame by laser-induced fluorescence (LIF). The NO A-X (0,0) vibrational band around 226nm was excited using a XeCl excimer-pumped dye laser. Selecting an appropriate NO transition minimizes interference from Rayleigh scattering and O2 fluorescence. The measurements were taken in CH4/O2/N2 premixed flame with equivalence ratios varying from $1.0{\sim}1.6$, and a fixed flowrate of 5slpm. NO was found to produce primarily between an inner premixed and an outer nonpremixed flame front, and total NO concentration is raised when equivalence ratios increase. These results suggest that prompt NO is likely to contribute to NO formation in CH4/O2/N2 premixed flame. Furthermore, this trend was well matched with previous works.

  • PDF

Flowfield Characteristic of a Flat Flame Burner using One Frame Double Exposure Method (단일 프레임 이중 노출법을 이용한 Flat Flame Burner의 유동장 특성에 관한 연구)

  • Jeong, Y.K.;Jeon, C.H.;Chang, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.692-697
    • /
    • 2000
  • Recently, Flat flame burners are hilighted in high-load burners. Our study contains flow field analysis of a flat flame burner. In this paper, We analyzed the direction and magnitude of the velocity in a round tile type burner with swirl angles, $10^{\circ},\;30^{\circ},\;50^{\circ}$. In the case of swirl angle $10^{\circ}$, because axial momentum is larger than radial momentum, Recirculation region was weakly developed. In the case of swirl angle $50^{\circ}$, Flow in front of the tile is distributed for radial direction. And Recirculation region is large. So, We expect that the radiation can be transmitted from tiles and the recirculation region may cause $NO_x$ reduction.

  • PDF

An experimental study on the burning velocity measurement of natural gas (천연가스의 연소속도 측정에 관한 실험적 연구)

  • Yu, Hyeon-Seok;Han, Jeong-Ok;Bang, Hyo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.195-201
    • /
    • 1997
  • Static and non-static flame methods were used to measure the laminar burning velocity of methane, ethane and natural gas. The flame slot angle and velocity of unburned gas mixture were determined by Schlieren method and LDV, respectively, for static flame. The diameter of nozzle was selected as 11 mm. The experimental results containing the stretch effect showed that the maximum burning velocities were 41.5 for natural gas, 40.8 for methane and 43.4 cm/sec for ethane on equivalence ratio of 1.1. Constant volume combustion chamber was also used for non-static flame. The propagation process of flame front was visualized by high speed camera during constant pressure. The maximum burning velocity of natural gas was determined as 42.1 cm/sec on equivalence ratio of 1.15.

A Structural Behavior of the Propane/Air Premixed Flame Interacting with an Ultrasonic Standing-wave (정상초음파가 개재하는 프로판/공기 예혼합화염의 구조 거동)

  • Lee, Sang-Shin;Seo, Hang-Seok;Kim, Jeong-Soo;Lee, Do-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.294-299
    • /
    • 2012
  • An investigation into the influence of ultrasonic standing wave on the structural behavior of propane/air premixed flame has been made to get a clue to the combustion reaction acceleration and combustion instability, as well. Visualization technique utilizing the Schlieren method was employed for the observation of structural variation of the premixed flame. The flame shape and propagation velocity were measured according to the variation of equivalence ratio. It was found that the standing wave distorted the flame front and expedited a transition to the flame with turbulent nature.

  • PDF

Effect of Flow Distribution on the Combustion Efficiency In an Entrained-Bed Coal Reactor (분류층 석탄반응로에서 유동분포가 연소성능에 미치는 영향)

  • CHO, Han Chang;SHIN, Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1022-1030
    • /
    • 1999
  • A numerical study was carried out to analyze the effect of flow distribution of stirred part and plug flow part on combustion efficiency at the coal gasification process in an entrained bed coal reactor. The model of computation was based on gas phase eulerian balance equations of mass and momentum. The solid phase was described by lagrangian equations of motion. The $k-{\varepsilon}$ model was used to calculate the turbulence flow and eddy dissipation model was used to describe the gas phase reaction rate. The radiation was solved using a Monte-Carlo method. One-step parallel two reaction model was employed for the devolatilization process of a high volatile bituminous Kideco coal. The computations agreed well with the experiments, but the flame front was closer to the burner than the measured one. The flow distribution of a stirred part and a plug flow part in a reactor was a function of the magnitude of recirculation zone resulted from the swirl. The combustion efficiency was enhanced with decreasing stirred part and the maximum value was found around S=1.2, having the minimum stirred part. The combustion efficiency resulted from not only the flow distribution but also the particle residence time through the hot reaction zone of the stirred part, in particular for the weak swirl without IRZ(internal recirculation zone) and the long lifted flame.

Large Eddy Simulation of Turbulent Premixed Combustion Flow around Bluff Body based on the G-equation with Dynamic sub-grid model (Dynamic Sub-grid 모델을 이용한 G 방정식에 의한 보염기 주위의 난류 예혼합 연소에 관한 대 와동 모사)

  • Park, Nam-Seob;Ko, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1084-1093
    • /
    • 2010
  • Large eddy simulation of turbulent premixed flame stabilized by the bluff body is performed by using sub-grid scale combustion model based on the G-equation describing the flame front propagation. The basic idea of LES modeling is to evaluate the filtered-front speed, which should be enhanced in the grid scale by the scale fluctuations. The dynamic subgrid scale models newly introduced into the G-equation are validated by the premixed combustion flow behind the triangle flame holder. The calculated results can predict the velocity and temperature of the combustion flow in good agreement with the experiment data.

Agitation Effects of an Ultrasonic Standing Wave on the Dynamic Behavior of Methane/Air Premixed Flame (메탄/공기 예혼합화염의 동역학적 거동과 정상초음파의 교반)

  • Seo, Hang-Seok;Lee, Sang-Shin;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.16-23
    • /
    • 2012
  • This study has been conducted to scrutinize agitation effects of an ultrasonic standing wave on the dynamic behavior of methane/air premixed flame. The propagating flame was caught by high-speed Schlieren images, through which local flame velocities of the moving front were analyzed in unprecedent detail. It is revealed that the propagation velocity agitated by the ultrasonic standing wave is greater than that without agitation at the stoichiometric ratio: the velocity enhancement diminishes as the equivalence ratio approaches upper flammability limit or lower flammability limit. Also, vertical locations of the wave-affected frontal distortions do not vary appreciably, unless the propagating-mode characteristics (pressure amplitude and driving frequency) of ultrasonic standing wave were not changed.