• 제목/요약/키워드: Flame Front

검색결과 138건 처리시간 0.022초

가진된 덤프 연소기 내에서의 비예혼합 화염 거동 (Behavior of Non-premixed Flame Front in an Acoustically-Driven Dump Combustor)

  • 박정규;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.142-151
    • /
    • 2000
  • Dump combustor is a combustor having a dump plane to make coherent structures. A non-premixed flame dump combustor of simple geometry was constructed. We conducted basic experiments such as frequency response on the combustor to confirm the characteristics of the phenomena as a typical dump combustion and unsteady combustion. Furthermore we visualized the flame front behavior by CH chemiluminescence and high speed motion analysis. In spite of the lack of another data such as velocity, species concentration and temperature, the results showed not only the periodic motion of flame front but the ignition process of vortex ring flame. Also we could check out Rayleigh criterion by combining the visualization data with the pressure data.

  • PDF

이중분류버너화염의 미세구조에 관한 실험적 연구 (An experimental study on microstructure of doubled jet burner flame)

  • 장인갑;최경민;최병륜
    • 대한기계학회논문집B
    • /
    • 제20권7호
    • /
    • pp.2337-2346
    • /
    • 1996
  • One of the most useful method for increasing combustion loading of premixed flame is to strengthen the turbulent intensity of unburned mixture. It produces an important information to a design of efficient combustion equipment that analysing microstructure of strong turbulence premixed flame. The flame structure and characteristics are depend on the turbulence of unburned mixture. Therefore, to strengthen the turbulent intensity of unburned mixture make flame scale small and accomplish efficient combustion. We measured the velocity of local flame front movements, local eddy radius and local reaction zone thickness quantitatively with increasing turbulent intensity of unburned mixture. We researched the microstructure of flame using ion currents that react sensitively in the reaction zone. Consequently, the velocity of local flame front movements is depend on the velocity of unburned mixture and local eddy scale is to be small with increasing turbulent intensity. But there is no change in local reaction zone thickness with turbulence.

전파화염에서의 화염온도측정에 관한 연구 (Studies on the Flame Temperature Measurement of the Propagating Flame)

  • 조경국;정인석
    • 대한기계학회논문집
    • /
    • 제1권4호
    • /
    • pp.182-189
    • /
    • 1977
  • The propagating flame temperature of the Propane-Air premixture by using 30.$\mu$ and 50.$\mu$ diameter platinum sensing wires, that is, Two Wires Correction Method, Through the constant volume burining inside the 150mm diameter, 30mm height combustion chamber under the circumstances of the atomospheric pressure, and the room temperature was determined. Also the temperature distribution across High Temperature Region, i.e. Flame Front, and the temperature profile behind the flame the front have been obtained.

정상초음파의 주파수 변화에 따른 C3H8-Air 예혼합화염의 전파거동 및 구조변이 (Propagation Behavior and Structural Variation of C3H8-Air Premixed Flame with Frequency Change in Ultrasonic Standing Wave)

  • 이상신;서항석;김정수
    • 대한기계학회논문집B
    • /
    • 제38권2호
    • /
    • pp.173-181
    • /
    • 2014
  • 정상초음파장의 주파수 변이가 프로판/공기 예혼합화염의 전파거동 및 구조변이에 미치는 영향을 규명하기 위해 실험적 연구를 수행하였다. 다양한 당량비 조건에서 슐리렌 기법을 적용한 전파화염 가시화와 연소실 내부압력 측정을 통해 생성물 영역에서의 화염 구조변화 및 전파특성을 관찰하였다. 정상초음파가 존재할 경우 화염선단이 찌그러지고 기연부에서 횡방향 줄무늬가 생성되며, 이러한 구조변이는 정상초음파의 주파수에 종속한다. 또, 전파속도는 정상초음파가 교반하는 경우 증가되며, 화염전파 거동에 미치는 초음파의 영향은 주파수의 증가에 따라 보다 명확해진다는 사실도 확인되었다.

부상화염에서 예혼합화염과 삼지화염의 천이적 거동(II) (A Transitional Behavior of a Premixed Flame and a Triple Flame in a Lifted Flame(II))

  • 장준영;김태권
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.376-383
    • /
    • 2005
  • In the paper we investigate characteristics of a transitional behavior from a premixed flame to a triple flame in a lifted flame according to the change of equivalence ratio. In previous study, we showed that the stabilized laminar lifted flame regime is categorized by regimes of premixed flame, triple flame and critical flame. A gas-chromatograph is used to measure concentration field, a smoke-wire system is used to measure streak line, and a PIV system is used to measure velocity field in lifted flame. In the visualization experiment of smoke wire, the flow divergence and redirection reappeared in premixed flame as well as triple flame. Thus we cannot express the flame front of lifted flame has a behavior of triple flame with only flow divergence and redirection. In PIV measurement, flow velocity for those three flames has minimum value at the tip of flame front. To differentiate triple flame and premixed flame, $\Phi$ value of partially premixed fraction is employed. The partially premixed fraction $\Phi$ was constant in premixed flame. In critical flame small gradient appears over the whole regime. In triple flame, typical diffusion flame shape is obtained as parabolic distribution type due to diffusion flame trailing.

메탄/순산소 혼합층에서 edge flame의 구조 (Structure of Edge Flame in a Methane-Oxygen Mixing Layer)

  • 최상규;김준홍;정석호;김종수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.149-156
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF

메탄/순산소 혼합층에서 Edge Flame의 구조 (Structure of Edge Flame in a Methane-Oxygen Mixing Layer)

  • 최상규;김준홍;정석호;김종수
    • 한국연소학회지
    • /
    • 제11권1호
    • /
    • pp.19-26
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF

G 방정식을 이용한 실린더 챔버 내부 둔각물체 주위의 난류 예 혼합 화염 해석 (Application of G-equation to large eddy simulation of turbulent premixed flame around a bluff body inside a cylindrical chamber)

  • 최창용;박남섭;고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권4호
    • /
    • pp.391-398
    • /
    • 2005
  • In this investigation, turbulent premixed combustion and flame front propagation in a gas turbine combustion chamber is studied. Direct numerical simulation of turbulent reacting flows demands extremely high computational resources, especially in more complicated geometry. The alternative choice may be left for Large Eddy Simulation (LES) by which only large scales are solved directly. In combustion problems, capturing the large scales' behavior without solving the details of small scales is a difficult task. Using a transport equation for description of the flame front propagation and therefore avoiding the calculation of inner flame structure is the basic idea of this study. For this purpose. the so-called G-equation has been used by which any iso-level of the G variable provides the flame location. A comparison with the experiment indicates that the present method can predict a turbulent velocity field and also capture a instantaneous 3-dimensional flame structure.

Numerical Implementation of Flame Propagation and Flameholding

  • Rhee, Chang-Woo
    • 한국공작기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.124-129
    • /
    • 2001
  • The level surface approach for following flame front propagating in a premixed medium is adapted to incorporate the flameholding scheme. This allows one to follow the flameholding scheme. This allows one to follow the motion of an N-1 dimensional surface in N space dimensions. The flame speed may be an arbitrary function of flame geometry and the front is passively advected by an underlying flow field. This algorithm provides and accurate calculation of the flame curvature which may be needed for the flame propagation computation and thereby the estimation of curvature-dependent flame speeds. A numerical demonstration of this method-ology is applied to simulate the excursion of an anchored V-flame and locate the final equilibrium position.

  • PDF

정상 초음파장의 간섭에 의한 메탄/공기 예혼합화염의 구조 변이 (Structural Variation of Methane/Air Premixed Flame Caused by the Intervention of Ultrasonic Standing-wave)

  • 서항석;이상신;김정수
    • 한국추진공학회지
    • /
    • 제15권6호
    • /
    • pp.1-6
    • /
    • 2011
  • 본 연구에서는 정상초음파장의 간섭에 의해 야기되는 예혼합화염의 구조 변이를 규명하기 위한 실험 결과를 제시한다. 화염전파를 관찰하기 위해 슐리렌 기법을 이용하였으며, 초기압력 및 연소챔버 개방 유무에 따른 화염선단의 형태 및 화염 전파속도를 고찰하였다. 정상초음파장에 의한 화염선단의 찌그러짐이 관찰되었고, 초음파장의 특성이 변하지 않는 한 그 수직방향으로의 위치는 일정하였다. 정상초음파의 영향을 받은 화염은 전파할수록 구조적 변화가 심해졌으며, 전파속도 또한 증가하였다. 반사파와 정상초음파의 영향으로 연꽃모양의 화염(lotus flame)이 형성되는 사실을 발견할 수 있었다.