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Numerical Implementation of Flame Propagation and Flameholding

Chang Woo Rhec*

|[ Abstract I

The level surface approach for following flame front propagating in a premixed medium is adapted to incorporate the
flameholding scheme. This allows one to follow the motion of an N-1 dimensional surface in N space dimensions. The
flame speed may be an arbitrary function of flame geometry and the front is passively advected by an underlying flowfield.
This algorithm provides an accurate calculation of the flame curvature which may be needed for the flame propagation
computation and thereby the estimation of curvature-dependent flame speeds. A numerical demonstration of this method-
ology is applied to simulate the excursion of an anchored V-flame and locate the final equilibrium position.
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1. Introduction

The world wide cnergy cnsis and the ensuing need for
more efficient use of the finite energy resources makes an
understanding of combustion processes at a fundamental
level imperative. In particular, the propagation of premixed
flames has been nvestigated due to their use in industrial,
military and automotive applications. Much progress has
been made in the past decade in the nurmerical modeling as
well as in the experimental observation. Nevertheless, the
coupling of the exothermic chemical reaction with the
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hydrodynamic flowfield is a difficult problem to solve and
so more studies on a fundamental level are still needed.
Since the premixed flame is charaterized by its intrinsic
propagation speed, an accurate description of flame motion
within a flowfield is essential to a better understanding of
the combustion process.

The laminar flamelet concept™ is based on the idea that
the flowfield consists of a collection of flame elements
embedded in a flowfield. The structure of these flamelets is
analyzed separately from the flow so that the complicated
chemistry is decoupled from the simulation of the flow-
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field. In many practical situations, the flame thickness is
much smaller than the smallest length scale and so the
flamelet descriptions are relevant”. If one goes one step
further beyond the flamelet model, a flame sheet model is
employed by taking the zero limit for the flame thickness
and thereby solving only for the flame front geometry®. In
this case, the flame front acts as an infinitely thin hydrody-
namic discontinnity which separates two regions of con-
stant densities and propagates into the fresh mixture at a
prescribed flame speed. The speed may be a function of the
tocal curvature of the flame front, which avoids hydrody-
namic instability, Fluid elements at the flame front under-
go a thermal expansion as they burn, creating a jump in the
normal component of velocity across the flame front,
Typically there have been two types of numerical meth-
ods for tracking interfaces such as crystal growth and flame
propagation. One is to follow the surface of the interface
parametrized by marker points”. The positions of marker
points are updated in time according to the equations of
motion. This can be effective in an attempt to follow the
motions of small perturbations. But an artificial regridding
procedure is required for large, complex motions when
marker particles merge together and so the curvature of the
propagating front builds up. But this regridding procedure
resembles diffusion and overshadows the real effects of
interface motions. The other is to track the motion of the

interior region separated by the interfaces™

. The interior is
discretized by employing a grid on the computational
domain and assigning to each cell a volume fraction corre-
sponding to the amount of interfor fluid located in that cell.
An advantage is that no new computational elements are
needed in the caleulation unlike the parametrization proce-
dure. Also complicated topological interfaces are easily
handled, but it is difficult to accurately represent the inter-
face movements.

In this study, the level surface approach® for following
flame front propagating in a premixed medium is adapted
to the case of a rod-stabilized premixed V-flame. This
flame configuration chosen is of both practical and funda-
mental significance. Premixed fuel and air flows vertically
around a circular cylinder or a bar, held perpendicular to the
mean flow direction. A V-shaped flame can be stabilized

by the hot products which recirculate in the wake of a bar
and so come into contact with the cold reactants. The reac-
tant gases are ignited by contact with the hot products and
two oblique flame sheets form, one on each side of the
body. The study of flame stabilization on bluff bodies is
also a subject of ongoing practical concern since it has
application in the vast majority of industrial devices, rang-
ing from jet-engine afterburners to practical combuation
systems. These power-production devices require that
flames be retained in the system. Gas velocities usually
exceed the flame speed and hence the flames must be stabi-
lized against the blowout, a condition at which flames are
transported out of the bumner and the combustion ceases. [n
order for a flame front to be stationary, the local condition
for stabilization of the flame should be realized in such a
way that the normal velocity of the unbumnt gas and the nor-
mal flame speed must be equal at the flame front. This can
be achieved by the presence of a flameholder or retention
point, line or region,

The main objective in this work is to numerically incor-
porate the above flame stabilization idea into the level sur-
face approach. The test problem is the simple case of rod-
stabilized premixed flame, a configuration which has been
investigated extensively both experimentally and theoreti-
cally. A numerical demonstration is presented describing
the evolution of an anchored V-flame and the final equilib-
rium location of the interface after a sufficient time,

2. Physical Model

The main assumptions of our model for flame propaga-

tion and its response to the accompanying flowfield are:

a) the flowfield is two-dimensional and inviscid,

b) the Mach number is small enough to consider the
flowfield as incompressible,

c) the flame acts as an interface which separates two
regions of different but constant density and propa-
gates inte the unbumnt region at a prescribed flame
speed S,.

It is convenient to formulate the flame propagation prob-

lem in terms of an equation for a scalar field. Following
Osher & Sethian®, we define a continuous initial distance
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function such that ¥/> 0 in the unbumt region, ¥ < 0 in
the bumt region and the Y = 0 represents the flame front as
depicted in Fig. 1.

In order to find an equation for the evolution of a scalar
field ¥ which corresponds to the propagating flame, the
motion of some level surface ¥ = C is considered. Let
(x(), ¥{£}) be the trajectory of a particle located on this
level surface, so

¥ =@, y0), n=C M

The particle speed % , in the direction -# normal to

the flame, is given by the flame speed S,. Thus, with the
convention adopted here that the normal vector # points in
the direction of the bumnt gas

-n==5, @)

where n is given by n = —V¥/|V¥|. When the chain
rule is applied to Eq. (1),

ox
Y4+—-V¥=0 3
P a‘ ()

is obtained. A substitution of n to Eq. (2) converts Eg. (3) to

¥ +5,VP|=0 (4
Flame front
Unbumt region Bumt region
¥ >0 P <0

¥y
n
t—> Hx,p,)=0

X

Fig. 1 Flame front configuration.

A flame propagates with its own buming speed relative
to the accompanying flowfield. The flowfield influences
the flame location by advection. Hence, there exists a mutu-
al interaction between the flame and flowfield. In this case,
the scalar field equation with propagation and advection
becomes

¥+ S[VE|+U- V¥ =0 )

The second term represents propagation and the third
term denotes advection of the scalar field. The velacity vec-
tor U is the convection velocity of the unburnt fluid just
upstream of the flame front.

3. Numerical methods

We present the numerical details for an approximation to
Eq, (5) of the flame motion. The algorithm uses the method
of fractional steps to decompose the flame motion into
propagation and advection. First, we propagate the flame as
a result of bumning. Then the flame is advected by the
incoming velocity field. A flame-anchoring algorithm for
the flameholder of the V-flame is developed to stabilize the
flarne against the blowout.

3.1 Flame propagation with advection

We discretize the Eq. (5) with the initial condition ¥
{x,0)=0. The scalar field ¥ is initialized by taking ¥
{x,0)= Ld(x,y), where d is the distance from the point
{x,) to the initial surface and the plus/minus sign is chosen
if the point (x,)) is inside the unbumt/bumt region of the
computational domain. Following the argument of Osher
and Sethian, Eq. (4) for S,=1 can be written as

¥ +H(u, v)=0 (6)

where H(u, v)= f(’, v’)with u=¥,, v="Y,,
and fis a non-decreasing function in both variables. A
upwind monotone scheme for this case yields the fellowing
numerical flux,
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g = fl(max(DI¥}

-1k

(max(D'¥},

0))* +(min(D}¥};, 0))°,
0))’ +(min(DI¥}, 0))°1(7)

where the difference operators in Eq. (7) are defined by

D =¥ ¥

L k9
DI =¥, ~ )
Df'f’,-l = 'P,.nk _'P;n k10
DY, =¥ ¥

oH
This is fully upwind in that, if H, = s 0 and H, =

H . N
% <, then the scheme looks in the proper direction.

. . . At
The scheme is monotone if the Courant condition, E|H,f

Ay 1
— | H <= ] 1
+ Ayl 2[ 58 satisfied.

A first order upwind scheme is used for the advection

part as follows:
U-V¥ ~U'D", + U, D¥,

+y

We note that the Courant condition for the Eq. (5) vields

+V D, VDY,

+ g

s,/ +1v1

o A+ <

3.2 Flame anchoring

Since unburnt gas velocitics in combustors usually
exceed the flame speed in order to achieve high power den-
sities, we need to devise ways against blowout. This can be
enforced by the presence of a so-called retention point (or
line) or small retention region which ensures that a flame is
held back and stabilized. The ignition impulse is transmit-
ted from the retention point to neighboring portions of an
unbumt mixture.

We now design an implementation of the above idea of
flame stabilization into the level surface scheme®. Flames
are attached to a flamehotder by laying down an initial igni-
tion field ¥, on an Eulerian grid and letting ¥, acts as a
source of an ignition impulse from the location of a circular
flameholder, as is shown in Fig. 2. As flames propagate

127

vy 4
¥heo

¥ih =0
<o

‘N

Fig.2 Scalar field for flameholder, ¥p.
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Fig. 3 Scalar feld ac time £, Y¥(x, y, f), and at time t + Ay,
Y x, y,t + At), after propagation and advection.

with their own speeds and are advected with accompanying
flowfields, they are held back on the location of a flame-
holder by superimposing ¥, onto the propagating scakar
field ¥. This flame anchoring algorithm is used to ensure
that flames always remain within the computational doemain
and begin at the retention point (or region) irrespective of
their initial shapes.

As an example, consider a two-dimensional case of
flameholding. We want to hold the flame by a circular
flameholder shown in Fig. 2. There is an incoming flow
from the negative x to positive x and flame is propagating
to the radial direction. Suppose we have a flame located on
a small circle which 15 a zero-level surface at a initial time ¢,
as is depicted in Fig. 3. We have new flame location on a
larger circle at a later time ¢ + At due to propagation and
advection. We impose the scalar field 'y, for flameholder
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¥ 1} Pixy.o+dn >0

¥ >0 ¥ix,y &)= 0
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Fig. 4 Combining of ¥, and W(x, y,# + At)
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Fig. 5 Anchored scalar fieid ¥ which is the minimum of ¥

a

th and ¥(x, y,1 + Af)and the anchored flame position

as a level surface of W =10.

in Fig. 2 to the scalar ficld at 1+ Az in Fig. 3. At each time
step, we take the minimum of ‘¥, and the scalar field by
propagation and advection, as is shown in Fig. 4, to get an
anchored scalar field ‘¥, . The level surface equal to ¥, =
0 gives the flame position in Fig, 5 which is anchored by the
circular flameholder.

4. Numerical examples

The numerical method is applied to the kinematic behav-
ior of a V-shaped premixed flame, a flameholder placed
between two walls. Although we are simulating an open
flame, numerical work requires a finite computational
domain. Hence, the solution domain is truncated to a rec-
tangle of axial (x} length equal to 2 and transverse () width
equal to 1. Incoming fresh mixture enters the computational

domain at x = 0 with a velocity equal to 1. All velocities and
lengths are scaled with the incoming free-stream velocity
and the ransverse width, respectively. The combination of
the two gives a time scale. The flameholder is located at (x,
¥)={(0.5, 0.5). Non-dimensional flame speed is given as an
input. The grid size is equal to 0.02 and the time step is
0.004 in order to satisfy the Courant condition. At the inlet,
we choose a fixed boundary condition: the periodic reini-
tialization of the level surface function Y ensures that
these upstream boundary conditions do not affect the
downstream computation. The downstream boundary con-
ditions for % are outflow conditions, and the upward dif-
ferencing precludes the use of boundary conditions along
the exit. On the solid walls, the boundary conditions for
¥ are mirror conditiens,

In this case the V-flame simply adjusts kinematically to
the incoming flow. The sine of the angle between the flame
and the centerline is equal to the flame speed divided by the
free stream velocity. Since the incoming flow is not dis-
turbed by the presence of the flame, the equilibrium shape
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Fig. ¢ Flame response as the flame speed varies,
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of the flame should be planar. Fig. 6(z) and (b) show the
response of the flame as the flame speed varics: (a) S,/ U

=0.08and (b) S, /{/=0.5. Attime ¢ = 0, the flame is ini-
tialized at an arbirary chosen angle, the same in both cases.
In case (a) the flame closes up at each successive equal
time intervals until the equilibrium condition is met, the
opposite is true for case (b).

5. Conclusions

The level suface algorithm, originally developed for han-
dling a topological merging and breaking of a complex
interface motion, is adapted to account for the flame stabi-
lization by adding the flameholding scheme. The resulting
flame anchoring algorithm is shown to simulate the kine-
matic adjustment of an anchored V-flame to the incoming
flowfield accurately. Some of the important features of this
study are as follows.

(a) The flame anchoring algorithm is successfully devel-
oped by combining the flame propagation scheme
with the flameholding scheme.

{b) The equilibrium angle between the flame and the cen-
terline is reached as predicted from flame kinematics.

(c) This algorithm does not require the interface to
remain a function, and the first order scheme used
here is simple to program.
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