• Title/Summary/Keyword: Flame Characteristics

Search Result 1,525, Processing Time 0.024 seconds

Combustion Radicals and NOx Emissions Characteristics by Control of Partially Premixed Flames (부분적 예혼합화염제어에 의한 연소 라디칼 및 NOx 배출물 특성)

  • Kim, Tae-Gwon;Jang, Jun-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.561-569
    • /
    • 2002
  • This paper presents an investigation on $C_2$, CH, OH radicals and NOx emissions in partially premixed flames with acoustic excitation. The radicals are visualized by the digital image technique with optical filters and ICCD camera while NOx emissions are determined by a chemiluminescent detection(NOx analyser). The measurements are made in flames with an overall equivalence ratio (${\phi}_o$) 0.5 and a center tube equivalence ratio(${\phi}_c$) varing from 1.1 to 5.0 for a constant fuel flow rate. In the case of excitation, the visual shape of the flame is changed from laminar to turbulent-like flames. Images of $C_2$, CH, and OH radicals resemble those of the flame appearances as the excitation phase is varied, and the radicals generated at the upstream are convected toward the downstream. It is inferred that the flame characteristics is affected by the flow characteristics of air-fuel mixture. In the case of acoustic excitation, OH radicals are much increased relative to unexcitation. From the radicals and flame visualization under acoustic excitation, the reduction of flame length affects the shorter residence time of center tube mixture, and significantly influences the NOx reduction.

The Effects of Spray Parameters on the Flame and Spray Characteristics for Liquid Fuel Spray Flame (액체연료 의 분사연소시 분사조건 이 화염 과 액적군 의 성질 에 미치는 영향)

  • 김호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.201-209
    • /
    • 1984
  • In order to examine the effect of initial spray condition on the spray combustion mode and flame characteristics, theoretical analysis was carried out to predict combustion mode and flame structure for various initial distribution of droplets in spray. A system of conservation equations of spray flame in two dimensional axisymmetric for two phase flow was solved by a discrete element method for n-Butylbenzen (C$_{10}$ $H_{14}$). As a results of present study, there are two principal group combustion modes that may occur independently for various initial group combustion numbers in a spray burner. These group combustion modes are termed as an external and internal group combustion mode. The critical group combustion number between the internal and external group combustion mode and the flame characteristics of those flame are also predicted. These results may be used as a basic data in the designing of new combustors as well as proper operating conditions for spray burners.s.

Flame Structure and NOx Emission Characteristics in Laminar Partially Premixed $CH_4$/Air Flames;Effect of Premixing Degree (메탄/공기 층류 부분 예혼합화염의 화염구조와 NOx 배출특성;예혼합 인자의 영향)

  • Oh, Jeong-Seog;Jeong, Yong-Ki;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.75-81
    • /
    • 2003
  • In this paper, the study of effects of flow variables on flame structure and NOx emission concentration was performed in co-axial laminar partially premixed methane/air flames. the objectives are to reveal its effect as parameters were varied and to understand the correlation between flame structure and NOx emission characteristics in the reaction zone. equivalence ratio(${\Phi}$), fuel split degree(${\sigma}$), and mixing distance(x/D) were defined as a premixing degree and varied within $1.36{\sim}3.17$(equivalence ratio), $50{\sim}100$(fuel split degree), and $5{\sim}20$(mixing distance). the image of $OH{\ast}$ and $CH{\ast}$, and NOx concentration were obtained with an ICCD camera and a NOx analyzer. additionally the maximum intensity location of $OH{\ast}$ chemiluminescence and $CH{\ast}$ chemiluminescence were measured to compare each flame structures. In conclusion flame structure and NOx emission characteristics were changed from diffused to premixed flame when mixing degree was on the increase. the main effect on flame structure and NOx production was at first equivalence ratio(${\Phi}$), and next fuel split degree(${\sigma}$), and finally mixing distance(x/D).

  • PDF

Overview of Fire Safety onboard International Space Station(ISS): Characteristics of Flame Ignition, Shape, Spread, and Extinction in Microgravity (국제우주정거장 화재안전 연구개괄: 마이크로중력화염의 특성(점화/형상/전파/소멸특성))

  • Park, Seul-Hyun;Hwang, Cheol-Hong
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.21-29
    • /
    • 2012
  • Due to a significant leap in the science and technology, the manned space exploration that has started with suborbital flights is now being expanded into the deep space. The space superpowers such as the U.S. and Russia have been making an effort to further develop the manned space technology. Among such technologies, the fire safety technology in microgravity has recolonized as one of the most critical factors that must be considered for the manned space mission design since the realistic fire broke out onboard the Mir station in 1997. In the present study, the flame characteristics such as flame ignition, shape, spread, and extinction that are critical to understand the fire behavior under microgravity conditions are described and discussed. The absence of buoyancy in microgravity dominates the mass transport driven by diffusiophoretic and thermophorectic fluxes (that are negligible in normal gravity) and influences the overall flame characteristics-flame ignition, shape, spread, and extinction. In addition, the cabin environments of the pressurized module (PM) including the oxygen concentration, ambient pressure, and ventilation flow(which are always coupled with microgravity condition during the ISS operation) are found to be the most important aspects in characterizing the fire behavior in microgravity.

The Experimental Study for Heat Transfer and Combustion Characteristics of Gaseous Impinging Jet Premixed Flame (예혼합 화염이 벽면에 충돌시 열전달 및 연소특성에 관한 실험적 연구)

  • 정은규;조경민;김호영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.1-10
    • /
    • 1996
  • In the present study, the structure and the characteristics of gaseous premixed flame impinging normal to the flat plate have been investigated experimentally. For the examination of the heat transfer and combustion characteristics, measurements of temperature, direct and schlieren photography were performed. The results of present study show that the length of inner flame becomes smaller as distance from nozzle exit to plate decrease. The width of flame becomes larger as air-fuel ratio decreases. The smaller Reynolds number at nozzle exit and the smaller distance from nozzle exit to plate lead to the higher heat transfer rate in the region of center of plate. As the air-fuel ratio decreases, the heat transfer at plate with moderate rate occurs on wide region.

  • PDF

Basic Study on Combustion Characteristics of Coaxial Premixed Burner with the Addition of $Al_2O_3$ Particles (산화 알루미나 입자 첨가에 따른 동축류 예혼합 연소기의 연소 특성 기초연구)

  • Park, Seung-Il;Kim, Go-Tae;Kim, Nam-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.58-65
    • /
    • 2011
  • Thermal spray technology has been used in many industrial application. Especially, thermal spray coating have been employed with the purposes of achieving better resistances in abrasion, heat and corrosion. In the previous studies on the thermal spray coating, thermal spray characteristics from the perspective of combustion engineering have not been investigated sufficiently, while the material characteristics of the coated substrates have been investigated widely. In this study, the effect of spray particles on the flame behavior was experimentally investigated. The amount of the injected particles was measured using the light scattering method and the temperature of the particles was estimated using a two-color method. Various flame-spray interactions were observed and it was found that the high temperature zone near the flame is elongated by particles density. Based on these results, the applicability of the light scattering method and the two-color method was discussed.

An Experimental Study on the Swirled Flow Pattern and Combustion Characteristics in the Flat Flame Burner (평면화염 버너의 선회유동 및 연소특성에 관한 실험적 연구)

  • Kim, C.M.;Choi, S.J.;Jeon, C.H.;Chang, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.686-691
    • /
    • 2000
  • The flat flame made by swirling air has lots of the different characteristics according to the swirl numbers in the burner throat. Its combustion characteristics are also affected by them. In this study, the flow patterns in the flat flame burner which is no firing condition were investigated experimentally with using smoke in terms of each swirl number. Also the blow off, flame structure, temperature distribution and NO emission in the firing condition were measured at the atmosphere and combustion furnace.

  • PDF

Characteristics of Propagating Tribrachial Flames in Counterflow (대향류 유동장에서 삼지 화염 전파 특성에 관한 연구)

  • Chung, Tae-Man;Ko, Young-Sung;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.422-427
    • /
    • 2000
  • Propagation characteristics of tribrachial flames have been investigated experimentally in both two-dimensional and axisymmetric counterflows. Mixture fraction gradient at stoichiometric location is controlled by varying equivalence ratios at the two nozzles, one of which maintains rich while the other lean premixture. Tribrachial flames propagating through these mixtures are investigated. The propagation speed of tribrachial flames in two-dimensional counterflow decreases with fuel concentration gradient and has much higher speed than the maximum speed predicted previously in two-dimensional mixing layers. From an analogy with premixed flame propagation, this excessively large propagation speed can be attributed to the tribrachial flame propagating with respect to burnt gas. Corresponding maximum speed in the limit of small mixture fraction gradient is estimated and extrapolated experimental results substantiate this limiting speed. As mixture fraction gradient approaches zero, a transition in propagation characteristics occurs, such that the propagation speed of tribrachial flame approaches stoichiometric laminar burning velocity with respect to burnt gas. Similar behavior has been obtained for tribrachial flames propagating in axisymmetric counterflow.

  • PDF

Stability Characteristics of Syngas($H_2$/CO)/Air Premixed Flames using an Impinging Jet Burner (충돌제트 버너에서 합성가스($H_2$/CO)/공기 예혼합화염의 안정화 특성)

  • Park, Ju-Yong;Lee, Kee-Man;Hwang, Cheol-Hong
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • An experimental study was conducted to investigate the flame stability of the synthetic gas (syngas) using an impinging premixed jet burner. Since the syngas mainly consisted of $H_2$ and CO, the $H_2$/CO mixture was simulated as the syngas. $H_2$/CO mixture ratios, fuel/air mixture velocities and equivalence ratios were used as major parameters on the flame stabilitym The role of the impinging plate on the flame stability was also examined. In addition, laminar burning velocities of the $H_2$/CO mixture were predicted numerically to understand the characteristics of the flame stability for the syngas. The increase in the H2 concentration into the syngas brings about the extension of the blowout limit and the reduction in the flashback limit in terms of the stable flame region. The impinging jet plate broadened the blowout limit but does not play important role in changing of the flashback limit. Finally, it was found that the stability region of the flame using the syngas, which is expressed in terms of the mixture velocity and the equivalence ratio in this study, significantly differed from that of $CH_4$.

A Study of NO Formation Characteristics in Laminar Flames Using 2-D LIF Technique (2-D LIF를 이용한 층류화염의 NO 생성특성에 관한 연구)

  • Lee, Won-Nam;Cha, Min-Suk;Song, Young-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.38-48
    • /
    • 2003
  • OH, CH and NO radical distributions have been measured and compared with the numerical analysis results in methane/air partially premixed laminar flames using 2-D LIF technique. The pick intensity of OH LIF signal is insensitive to fuel equivalence ratio: however, CH LIF intensity decreases as equivalence ratio increases and the NO concentration increases with equivalence ratio. The contribution of the prompt NO, formed near premixed reaction zone, to the total NO formation is evident from the OH, CH, and NO PLIF images in which the dilution effect of nitrogen is minimal for the highest equivalence ratio. Measured OH and NO LIF signals in counterflow flames agree with the computed concentration distributions. Both numerical and experimental results indicate that the structural change in a flame alters the NO formation characteristics of a partially premixed counterflow flame. The nitrogen dilution also changes flame structure, temperature and OH radical distributions and results in the decreased NO concentrations in a flame. The levels of decrease in NO concentrations, however, depends on the premixedness(${\alpha}$) of a flame. The larger change in the flame structure and NO concentrations have been observed in a premixed flame(${\alpha}=1.0$), which implies that the premixedness is likely to be a factor in the dilution effect on NO formation of a flame.

  • PDF