• Title/Summary/Keyword: Fixture Design

Search Result 208, Processing Time 0.027 seconds

PHOTOELASTIC STRESS ANALYSIS OF IMPLANTS ACCORDING TO FIXTURE DESIGN (임플랜트 고정체의 형태에 따른 광탄성 응력분석)

  • Mun So-Hee;Kim Nan-Young;Kim Yu-Lee;Cho Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.51-62
    • /
    • 2006
  • Purpose: The purpose of this study was to evaluate the pattern and the magnitude of stress distribution in the supporting tissues surrounding three different types of implants(ITI, 3i. and Bicon implant system) Material and method: Photoelastic models were made with PL-2 resin(Measurements Group, Raleigh, USA) and three implants of each kind were placed in the mandibular posterior edentulous area distal to the canine. For non-splinted restorations, individual crowns were fabricated on three titanium abutments. For splinted restorations, 3-unit axed partial dentures were fabricated. Photoelastic stress analyses were carried out to measure the fringe order around the implant supporting structure under simulated loaded conditions(15 lb. 30 lb). Conclusion: The results were as follows; 1 Regardless of the implant design, stresses were increased in the apex region of loaded implant when non-splinted restorations were loaded. While relatively even stress distribution occurred with splinted restorations. Splinting was effective in the second implant. 2. Strain around Bicon implant were lower than those of other implants, which confirmed the splinting effect. The higher the load, the more the stress occurred in supporting tissue, which was most obvious in the Bicon system. 3. Stress distribution in the supporting tissue was favorable in the ITI system. while the other side of 3i system tended to concentrate the stress in some parts.

PHOTOELASTIC ANALYSIS OF STRESSES INDUCED BY VARIOUS SUPERSTRUCTURES ON THE ENDOSTEAL IMPLANT (치과 임플랜트 보철 수복시 각 상부구조의 형태에 따라 발생되는 응력의 광탄성학적 분석)

  • Choi Young-Hee;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.679-686
    • /
    • 1993
  • The osseointegrated implant conducts the stress directly to the bone due to lack of cushoning effect of periodontal ligament. So, the design and material quality of superstructure plays an important role in resolution and diffusion of stress. Recently, the various superstructures have been developed to improve esthetics and resolve various complicated conditions. The purpose of this study was to evaluate the stress induced by various system on the osseointegrated implant using UCLA abutment, EsthetiCone abutment, Anatomic abutment as well as Branemark conventional abutment. The stress distribution was evaluated by the photoelastic method which can simultaneously observe all around stress distribution. The superstructures embedded in epoxy resin specimen were loaded at various angle with a force of 15Kg to analyse the stress distribution of the fixture. The results of this study were obtained as follows : 1. Under vertical loading, the large and broad stress was distributed below the fixture in all systems. 2. The fringe order of the stress was increased in proportion to tillting the specimen. The largest stress was shown in 25 angled degree tilting case. 3. The Branemark conventional abutment showed the lowest value, and EsthetiCone abutment, Anatomic abutment and UCLA abutment showed the stress value in accending order.

  • PDF

A Study on a Novel LED Lighting Fixture for Crosswalk Having Two Different Light Distributions (두 가지 배광을 갖는 LED 횡단보도 조명장치에 관한 연구)

  • Kim, Hyeong Jin;Lee, Dong Kyu;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.606-611
    • /
    • 2014
  • Recently, LED lighting fixtures for crosswalk become popular in order to recognize the pedestrians at crosswalk, which can enhance the safety of the pedestrian at crosswalk. However, there are several problems related to the LED lighting fixtures for crosswalk, such as a lot of energy consumption due to a constant illumination during night and glaring of pedestrians at the opposite side of crosswalk. In this study, in order to overcome these problems, we have investigated a novel LED lighting fixture for crosswalk, which has two modules with different angles ($60^{\circ}$, $120^{\circ}$). Illuminance of min and max at four-line city street crosswalk shown 50 Lux, 125 Lux, respectively. Illuminance of min and max at eight-line city street crosswalk shown 150 Lux, 200 Lux, respectively. Simulation investigation was optimized design using optical program. Prototype was verified measurement by goniometer system.

A VITRO STUDY OF RETAINED SCREW STABILITY BY VARIOUS CONNECTION DESIGNS BETWEEN FIXTURE AND ABUTMENT IN IMPLANT DENTISTRY (임플란트 고정체와 지대주 연결 형태의 차이에 따른 유지 나사 안정성에 대한 연구)

  • Yang Jae-Sik;Vang Mong-Sook;Jo Gyu-Jong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.1
    • /
    • pp.83-93
    • /
    • 2004
  • Statement of problem : Since the concept of osseointegrated dental implant by $Br{\aa}nemark$ et al was first applied to mandibular full edentulous patients. Recently it is considerated the first treatment option on missing teeth. A common problem associated with dental implant restorations is loosening of screws that retain the prosthesis to the abutment and the abutment to the implant fixture. Purpose : This study is to examine the influence on screw loosening of implant-abutment designs. Material and methods : External hex, cone screw, beveled hex, cam cylinder, cylinder hex by means of evaluating the loosening torques, with respect to a range of tightening torques after repeated loading. Result : 1. Cone screw, beveled hex groups are the highest initial tightening rate and cylinder hex, external hex groups are the lowest initial tightening rate (p < 0.05). 2. Cone screw groups are the highest after repeated loading tightening rate and cylinder hex groups are lowest after repeated loading tightening rate(p < 0.05). 3. Cone screw groups have the highest initial stability and anal stability. 4. All groups are decreased tightening rate after repeated loading.

A Case Study of the Design of Robot Welding Station in an Excavator Factory Using 3D Simulation (굴삭기공장에서 로봇을 이용한 용접공정의 3D 시뮬레이션 사례 연구)

  • Moon, Dug-Hee;Cho, Hyun-Il;Baek, Seung-Geun
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.113-121
    • /
    • 2005
  • Virtual Manufacturing is a powerful methodology for developing a new product, new equipment and new production system. It enables us to check the errors in design before production. This paper deals with a case study of virtual manufacturing in an excavator factory. Boom and rotating table of upper body are selected for application. 3D models of parts and fixtures are developed with CATIA and 3D simulation models are developed with IGRIP. These models are used for the design of fixture to verify the motion of the equipment. As a result, the manual welding systems are replaced by automatic systems and many design errors are corrected in the design phase, which enables us to reduce the developing cost and time.

  • PDF

Finite element stress analysis according to the point and surface occlusal loads on the implant prosthesis (임플란트 보철물의 점하중과 면하중에 따른 유한요소법적 응력 분석)

  • Choi, Min-Ho;Kang, Jae-Suek;Boo, Soo-Bung;Oh, Snag-Ho;An, OK-Ju;Kang, Dong-Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.2
    • /
    • pp.83-94
    • /
    • 2004
  • The purpose of this study was to compare the distributing pattern of stress according to the types of occlusal load on the finite element models of the splinted implant prostheses. The finite element model was designed with the parallel placement of two fixtures ($4.0mm{\times}11.5mm$) on mandibular first and second molars. The cemented crowns for mandibular first and second molars were made. Three-dimensional finite element model was created with the components of the implant, surrounding bone and cemented crowns. Two types of occlusal load, the point load and the surface load within 0.5 mm radius circle, were applied to the finite element models with 200N magnitude in axial(along the long axis of the implant and oblique(angulation of $30^{\circ}$ to the long axis) directions perpendicular to cuspal incline. Loads were positioned from the center of central fossa and to distance of 2 mm and 4 mm apart from the center of central fossa. Von-Mises stresses were recorded and compared in the fixtures and sections. The results were as following : 1. Under axial loading at the central fossa, the stress was distributed along the fixture except for the apical portion, not relative to both point & surface contacts. 2. With offset distance increasing, the highest stresses were concentrated in the neck portion of the fixture. 3. The maximum von Mises stress under the oblique load was greater than that under the axial load. 4. Under the oblique load, the highest stress were concentrated in the buccal side and lingual neck portion of the fixture with offset distance increasing. The results had a tendency to increase the stress on the neck portion of fixture with the offset and oblique loads increasing. The design of occlusal scheme should be allowed to distribute stress axially in maximum intercuspation and to decrease the angulation of cuspal incline.

Printed Folded Antenna for Dual-Band WLAN Operations

  • Chae, Gyoo-Soo;Cho, Young-Ki
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.3
    • /
    • pp.124-127
    • /
    • 2004
  • A novel printed inverted-F antenna for dual-band WLAN is presented. The proposed design is based on the folded quarter-wave antennas, which have a conductor plate having two arms. An extremely thin prototype antenna is fabricated according to the simulation result. The obtained antenna can perform in IEEE802.11a, b(2.4~2.484 GHz and 5.15~5.35 GHz bands) and be adopted for laptop applications. All the measurements are performed in the actual test fixture.

Development of Drilling Jig by Practical and Adaptive Tooling System(Part 2)

  • Sim, Sung-Bo;Lee, Sung-Taeg
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.177-180
    • /
    • 2000
  • This is the continue paper as part 2 in this study. In order to prevent the production defects, the optimum design of product, jig and fixture and their making are very significant devision. especially the result of tryout and its analysis become the characteristics of this paper that nothing might be ever seen before such as this type of research method on all processes.

  • PDF

LED Single and Whole Reflector Design of Downlight Lighting Fixture (다운라이트 조명기구에서 LED개별 및 전체 반사판 설계)

  • Kim, Kyoung-Onn;Kim, Young-Cai;Eo, Ik-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1497-1498
    • /
    • 2008
  • LED 조명기구의 최적 배광제어를 위한 방법으로 Reflector 와 Lens를 설계하여 빛을 제어한다. 그러나 Lens설계는 제작의 어려움과 광효율의 감소로 인하여 2차적으로 사용되는 방법이다. 이를 해결하기 위하여 본 논문에서는 Reflector를 이용한 배광 설계를 최적화하여 경제적인 제작이 가능 하도록 Photopia2.0을 이용하여 설계하였다. LED 각각의 개별 반사판과 모듈 전체 적용된 반사판을 적용하여 각 형태별 특징을 도출하였다.

  • PDF

Performance Experiment of H-120 Class Fire Damper for Offshore (해양플랜트용 H-120 등급 방화 댐퍼의 성능 실험)

  • Park, Chang-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.425-430
    • /
    • 2017
  • This study propose CAE analysis of fire damper and design of the damper control system. Through the design of the damper system for ANSYS-CFX heat transfer. As a result of the analysis, continuance equation of the damper control. Climate system. Finaily, We have obtained a fire damper solution by using orthogonal array. The fire damper of the set of fixture and alveolus are made by using a CAE software. Also, the optimum design offshore structures. The new H-120 class fire damper was designed. In the near future, fire resistance test was carried out to obtain class H-120 thermal insulation of fire dampers according to a hydrocarbon fire conditions. The test results showed that the insulation of the damper blade was an important factor in the fireproof performance of fire dampers concerning the coaming length minimum 500mm on the unexposed side as specified test standard.