• Title/Summary/Keyword: Fixing material

Search Result 109, Processing Time 0.029 seconds

Development of a Plasma Gun System for Ion Plating with Long Lifetime (이온 플레이팅용 장수명 플라즈마 건 장치의 개발)

  • Choi, Young-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.78-81
    • /
    • 2008
  • A hollow cathode which has extremely stable discharge characteristic has been developed. This is composed of the two separated lanthanum hexaboride(LaB6) of a disk type in the tube as the electron emitters. The way of design is of great advantage to extend the surface discharge area of the LaB6, which is also useful for optimal fixing of the LaB6. The hollow cathode is capable of producing 30 kW(100 V, 300 A) of power continuously. Because the generated plasma beam with the high temperature(above $3000^{\circ}C$) from the hollow cathode passes through the center hole of the two intermediate electrodes, it is designed with the high temperature material of the tungsten and the suitable structure of the water cooling. The combinations of the hollow cathode and the two intermediate electrodes are practically useful for the ion plating plasma beam source.

Mechanical Characteristics when Wire Electrical Discharge Machining and Surface Grinding for Titanium Alloy (티타늄합금의 와이어 방전가공과 연삭가공시 기계적 특성)

  • 김종업;왕덕현;김원일;이윤경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.172-178
    • /
    • 2001
  • Titanium alloys have lightness, high strength and good corrosion resistant characteristics, and broadly used in manufacturing parts for military and aerospace industries. And these alloys also are recognized for organism materials comparatively and used as fixing ones in the human body. Nevertheless thess alloys have excellent properties such as corrosion resistance, heat resistance, and good tensile strength, it is difficult to machine by traditional methods because of high hardness and chemically activated property. So higher tool wear is expected when cutting by tools. Therefore, it is required nontraditional machining process. And the mechanical characteristics such as surface structure and shape, hardness and bending strength are studied for wire electrical discharge machined and surface ground titanium alloys for various heat-treated conditions.

  • PDF

Root cause analysis on the phenomenon of voltage drop of connector used in the automotive throttle body control (스로틀 바디 제어신호 전달용 커넥터의 이상전압 강하 현상 원인 규명)

  • Cho, Young-Jin;Chang, Seog-Weon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1792-1797
    • /
    • 2007
  • This paper try to find root-cause of failure in a connector used in transmitting signals for throttle body control in automotives by analyzing possible failure causes and performing experiments to simulate the cable failure in field. The connector comprises fins, wires, and case moldings. The failure is due to degradation of initial clamping force required fixing fins and wires in the connector. Expansion and compression of the case molding material surrounding fins would cause the degradation. Investigations of strict initial claming force and control of thermal expansion property of the molding are required to prevent the failure.

  • PDF

Optimization of tube hydroforming process by using fuzzy expert system (퍼지 전문가 시스템을 이용한 강관 하이드로포밍의 성형성 예측에 관한 연구)

  • Park K. S.;Kim D. K.;Lee D. H.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.194-197
    • /
    • 2004
  • In the tube hydroforming process, a tube is placed into the die cavity and the ends of the tube are sealed by fixing the axial cylinder piston into the ends. Then the tube is pressurized with a hydraulic fluid and simultaneously the axial cylinders move to feed the material into the expansion zone. Therefore, the quantitative relationship between process parameters such as internal pressure and feeding amount and hydroformabillity, is hard to establish because of their high complexity and many unknown factors. In this study, the empirical and the quantitative relationship between process parameters and hydroformabillity are analyzed by fuzzy rules. Fuzzy expert system is an advanced expert system which uses fuzzy rule and approximate reasoning. Many process parameters are converted to the quantitative relationship by use of approximate reasoning of fuzzy expert system. The comparison between experimentally measured hydroformabillity from hydroforming experiments and the predicted values by fuzzy expert system shows a good agreement.

  • PDF

Effect of Sintering Time and Composition on Cutting Characteristics of $SiC-Si_3N_4$ Ceramic Tool ($SiC-Si_3N_4$ 세라믹공구의 소결시간과 조성변화가 절삭특성에 미치는 영향)

  • 박준석;김경재;이성구;권원태;김영욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.321-326
    • /
    • 2001
  • In the present study, $Si_3N_4-SiC$ ceramic composites that contained up to 20 wt% of dispersed SiC particles were fabricated via hot-pressing with an oxynitride glass. The microstructure, the mechanical properties, and the cutting performance of resulting ceramic composites were investigated. By fixing the composition as $Si_3N_4-20$ wt% SiC, the effect of sintering time on the microstructure, the mechanical properties, and the cutting performance were also investigated. For machining of gray cast i개n, the tool life increases with increasing the amount of SiC content in the composites; The tool life also increased with increasing the sintering time. The tool life of the home-made cutting tools was very close to that of commercial $Si_3N_4$ cutting tool. The superior cutting performance of $Si_3N_4-SiC$ ceramic cutting tools suggests the possibility to be a new ceramic tool material.

  • PDF

Finite Element Analysis to Micro-structure with Negative Poisson's ratio (음의 프와송 비를 갖는 미세 구조체에 대한 유한요소해석)

  • 이문규;최귀원;최재봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.694-697
    • /
    • 2003
  • Materials with specific micro-structural shape can exhibit negative Poisson's ratio. These materials can be widely used in structural applications because of their high resilience and resistance to impact. Specially, in the field of artificial implant's material, they have many potential applications. In this study, we investigated the Poisson's ratio and the ratio(E$_{e}$/E) of the elastic modulus of rotational particle structures based on structural design variables using finite element method. As the ratio of fibril's length to particle's diameter increased and the ratio of fibril's diameter to fibril's length decreased fixing the fibril's angle with 45 degree. the negative Poisson effect of rotational particle structures increased. The ratio of elastic modulus of these structures decreased with Poisson's ratio. The results show the reasonable values as compared with the previous analytical results.s.

  • PDF

Crystal Growth of $LiTaO_3$ and the Effect pf Crucible Type and Atmosphere ($LiTaO_3$ 단결정 성장과 용기 및 분위기의 영향)

  • 박승익;채승욱;김정돈;주기태;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.39-46
    • /
    • 1994
  • LiTaO3 single crystals were growth without cracking using Pt-Rh crucible and Ir crucible. The starting composition to get the melt of congruent melting composition, which has been dependent upon the experimental procedure, was taken after fixing the total growing process by the result of preliminary experiments. The Rh contamination from the Pt-Rh crucible was to be neglected if the crystal had been grown under inert atmosphere, which resulted in the crystal color being slightly yellow. This color was decolored after 24 hour's annealing at 1200℃ under air atmosphere. The optimum conditions for the crystal growing and the diameter control were so dependent upon the crucible material in spite of using the crucible of the same size. The liquid-solid interface of LiTaO3 crystal of 1" diameter has been flat if the rotation speed was 45rpm.

  • PDF

Finite Element Analysis on Contact and Work Stress of Rolled Strip (압연되는 스트립의 접촉 및 가공 응력에 대한 유한 요소 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.23-29
    • /
    • 2008
  • This study analyzes the rolled circular rod strip with radius of loom and length of 350cm by using finite element analysis. The material strength and its durability of the rolled strip can be predicted through this study. As the penetration tolerance by contact decreases, the contact rigidity of strip increases. As the contact rigidity becomes the highest at the elapsed time of 1.2 second, the contact stress becomes the lowest. On the contrary, von-Mises stress becomes highest at this time. The total deformation on strip increases from the upper part of strip at the position near to rotating roll to the lower part of strip at the position near to fixing roll.

A Study on Pylon Cable Anchor System in Cable-Stayed Railway Bridge (철도용 사장교의 주탑 케이블 정착부에 관한 연구)

  • Han, Sung-Gwan;Gong, Byung-Seung
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.565-580
    • /
    • 2006
  • Set in constant increase and period current of lively technical development of railroad use and construction of cable stayed bridge railway bridge, one of bridge form of most suitable that think side police officer and the material enemy of bridge that use long rail, is increasing laying stress on the foreign countries. Main tower fixing department of this cable stayed bridge is consisted of main tower flange that support bearing plate, bay ring plate bearing plate, support end rib and diaphragm etc, as stress transmission mechanic that tensility of cable socket into normal force of main tower, and is used this time. These structural elements is very complex the structure and direction of load delivered from socket specially calbe particularly be different, and need FEM analysis that use Thick Shell element for suitable arrangement of mutual stress flowing grasping and absence that follow hereupon because all of the each support plate angle that suport this differ.

  • PDF

A practical power law creep modeling of alloy 690 SG tube materials

  • Lee, Bong-Sang;Kim, Jong-Min;Kwon, June-Yeop;Choi, Kwon-Jae;Kim, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2953-2959
    • /
    • 2021
  • A new practical modeling of the Norton's power law creep is proposed and implemented to analyze the high temperature behaviors of Alloy 690 SG tube material. In the model, both the stress exponent n and the rate constant B are simply treated as the temperature dependent parameters. Based on the two-step optimization procedure, the temperature function of the rate constant B(T) was determined for the data set of each B value after fixing the stress exponent n value by using the prior optimized function at each temperature. This procedure could significantly reduce the numerical errors when using the power law creep equations. Based on the better description of the steady-state creep rates, the experimental rupture times could also be well predicted by using the Monkman-Grant relationship. Furthermore, the difference in tensile strengths at high temperatures could be very well estimated by assuming the imaginary creep stress related to the given strain rate after correcting the temperature effects on the elastic modulus.