• Title/Summary/Keyword: Fixed model test

Search Result 446, Processing Time 0.031 seconds

Natural wind impact analysis of transiting test method to measure wind pressure coefficients

  • Liu, Lulu;Li, Shengli;Guo, Pan;Wang, Xidong
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.199-210
    • /
    • 2020
  • Building wind pressure coefficient transiting test is a new method to test the building wind pressure coefficient by using the wind generated by a moving vehicle, which is susceptible to natural wind and other factors. In this paper, the Commonwealth Advisory Aeronautical Research Council standard model with a scale ratio of 1:300 is used as the test object, and the wind pressure coefficient transiting test is repeated under different natural wind conditions to study the influence of natural wind. Natural wind is measured by an ultrasonic anemometer at a fixed location. All building wind pressure coefficient transiting tests meet the test conditions, and the vehicle's driving speed is 72 km/h. The mean wind pressure coefficient, the fluctuating wind pressure coefficient, and the correlation coefficient of wind pressure are used to describe the influence of natural wind on the building wind pressure coefficient transiting test qualitatively and quantitatively. Some rules, which can also help subsequent transiting tests, are also summarized.

Monitoring of tension force and load transfer of ground anchor by using optical FBG sensors embedded tendon

  • Kim, Young-Sang;Sung, Hyun-Jong;Kim, Hyun-Woo;Kim, Jae-Min
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.303-317
    • /
    • 2011
  • A specially designed tendon, which is proposed by embedding an FBG sensor into the center king cable of a 7-wire strand tendon, was applied to monitor the prestress force and load transfer of ground anchor. A series of tensile tests and a model pullout test were performed to verify the feasibility of the proposed smart tendon as a measuring sensor of tension force and load transfer along the tendon. The smart tendon has proven to be very effective for monitoring prestress force and load transfer by measuring the strain change of the tendon at the free part and the fixed part of ground anchor, respectively. Two 11.5 m long proto-type ground anchors were made simply by replacing a tendon with the proposed smart tendon and prestress forces of each anchor were monitored during the loading-unloading step using both FBG sensor embedded in the smart tendon and the conventional load cell. By comparing the prestress forces measured by the smart tendon and load cell, it was found that the prestress force monitored from the FBG sensor located at the free part is comparable to that measured from the conventional load cell. Furthermore, the load transfer of prestressing force at the tendon-grout interface was clearly measured from the FBGs distributed along the fixed part. From these pullout tests, the proposed smart tendon is not only expected to be an alternative monitoring tool for measuring prestress force from the introducing stage to the long-term period for health monitoring of the ground anchor but also can be used to improve design practice through determining the economic fixed length by practically measuring the load transfer depth.

In vitro study of the fracture resistance of monolithic lithium disilicate, monolithic zirconia, and lithium disilicate pressed on zirconia for three-unit fixed dental prostheses

  • Choi, Jae-Won;Kim, So-Yeun;Bae, Ji-Hyeon;Bae, Eun-Bin;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.244-251
    • /
    • 2017
  • PURPOSE. The purpose of this study was to determine fracture resistance and failure modes of three-unit fixed dental prostheses (FDPs) made of lithium disilicate pressed on zirconia (LZ), monolithic lithium disilicate (ML), and monolithic zirconia (MZ). MATERIALS AND METHODS. Co-Cr alloy three-unit metal FDPs model with maxillary first premolar and first molar abutments was fabricated. Three different FDPs groups, LZ, ML, and MZ, were prepared (n = 5 per group). The three-unit FDPs designs were identical for all specimens and cemented with resin cement on the prepared metal model. The region of pontic in FDPs was given 50,000 times of cyclic preloading at 2 Hz via dental chewing simulator and received a static load until fracture with universal testing machine fixed at $10^{\circ}$. The fracture resistance and mode of failure were recorded. Statistical analyses were performed using the Kruskal-Wallis test and Mann-Whitney U test with Bonferroni's correction (${\alpha}=0.05/3=0.017$). RESULTS. A significant difference in fracture resistance was found between LZ ($4943.87{\pm}1243.70N$) and ML ($2872.61{\pm}658.78N$) groups, as well as between ML and MZ ($4948.02{\pm}974.51N$) groups (P<.05), but no significant difference was found between LZ and MZ groups (P>.05). With regard to fracture pattern, there were three cases of veneer chipping and two interfacial fractures in LZ group, and complete fracture was observed in all the specimens of ML and MZ groups. CONCLUSION. Compared to monolithic lithium disilicate FDPs, monolithic zirconia FDPs and lithium disilicate glass ceramics pressed on zirconia-based FDPs showed superior fracture resistance while they manifested comparable fracture resistances.

A Study of Soil Spring Model Considering the Seismic Load in Response Spectrum Analysis of Pile-Supported Structure (잔교식 말뚝 구조물의 응답스펙트럼해석 시 지진하중을 고려한 지반 스프링 모델 제안)

  • Yun, Jung-Won;Kim, Jongkwan;Lee, Seokhyung;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.5-17
    • /
    • 2022
  • Recently, several studies have been conducted on virtual fixed-point and elastic soil spring methods to simulate the soil-pile interaction in response to spectrum analysis of pile-supported structures. However, the soil spring stiffness has not been properly considered due to the seismic load magnitude, and studies on the response spectrum analysis of pile-supported structures considering this circumstance are inadequate. Therefore, in this study, the response spectrum analysis was performed considering the soil spring stiffness according to the seismic load magnitude, and the dynamic behavior of the pile-supported structure was evaluated by comparing it with existing virtual fixed-point and elastic soil spring methods. Comparing the experiment and analysis, the moment differences occurred up to 117% and 21% in the virtual fixed-point and elastic soil spring models, respectively. Moreover, when the analysis was performed using an API p-y curve considering the soil spring stiffness according to the seismic load magnitude, the moment difference between the experiment and analysis was derived at a maximum of < 4%, and it is the most accurate method to simulate the experimental model response.

Assessment of End Condition of Drilled Shafts Socketed into Rock by Impact Echo Test (충격반향기법을 이용한 암반근입 현장타설말뚝의 선단조건 평가)

  • 김형우;김동수;김원철
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.21-32
    • /
    • 2002
  • Small and full scale model tests were performed to obtain the transient responses of shafts subjected to elastic impact by impact-echo test. Four end conditions of drilled shafts were considered: (1) free, (2) fixed, (3) rock-socketed, and (4) soft bottom. In small scale model tests, mock-up shafts were fabricated to simulate these four drilled shafts using poly-urethane and plastic material. Additionally, skin frictions between shaft and rock were changed to find out the effect of side contact on dynamic responses. All impact responses were tested in the air. Subsequently, full scale model tests were also carried out on concrete shafts that were in free and rock-socketed condition. The end conditions of the drilled shafts could be identified with good reliability by the waveforms from both small and full scale model tests. The results obtained in this study will provide an improved understanding of the impact responses for end conditions, especially for rock-socketed drilled shafts that are frequently designed and built in Korea.

TEMPERATURE DISTRIBUTION OF THE IONOSPHERIC PLASMA AT FLAYER

  • Rhee, Hwang-Jae
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.269-274
    • /
    • 1997
  • Langmuir probe was housed in the sounding rocket to test the probe's performance and to find the environmental parameters at the F layer of the ionosphere. The gold plated cylindrical probe had a length of 14㎝ and a diameter of 0.096 ㎝. The applied voltage to the probe consisted of 0.9 sec fixed positive bias followed by 0.1 sec of down/up sweep. This ensured that the probe swept through the probe's current-voltage characteristic at least once during 1 second quiescent periods enabling the electron temperature to be measured during the undisturbed times of the flight. The experimental results showed good agreement of the temperature distribution with IRI model at the lower F layer. In the upper layer, the experimental temperatures were 100-200K lower than the IRI model's because of the different geomagnetic conditions: averaged conditions were used in IRI model and specific conditions were reflected in the experiment.

  • PDF

Flight Model Development of Linearized Channel Amplifier (선형화 채널 증폭기 비행모델 개발)

  • Hong, Sang-Pya;Go, Yeong-Mok;Yang, Ki-Dug;Ra, Keuk-Hwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.83-90
    • /
    • 2009
  • This paper presents the design and measurement of a flight model for a Ku-Band Linearized Channel Amplifier. All MMICs, Variable Gain Amplifier (VGA), Variable Voltage Attenuator ('.IVA), Branch line Coupler and Detector for Pre-distorter are fabricated using a Thin-Film Hybrid process. The performance of the fabricated module is verified through the radio frequency circuit simulation tool and electrical function test in space environment.

  • PDF

An Optimal Distribution Model under Consideration of Delivery Unit and Backlogging Costs (수송단위에 의한 지연납기를 고려한 최적 수송량 결정 모형)

  • Lee, Yang Ho;An, Joon-Hong;Choi, Gyunghyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.3
    • /
    • pp.206-212
    • /
    • 2003
  • In this paper, we propose a mathematical optimization model with a suitable algorithm to determine delivery and backlogging quantities by minimizing the total cost including the penalty costs for delay. The system has fixed transshipment costs and demands are fulfilled by some delivery units that represent the volume of delivery amount to be shipped in a single time period. Since, backlogging is allowed, demands could be delivered later at the expense of some penalty costs. The model provides the optimal decisions on when and how much to he delivered while minimizing the total costs. To solve the problem, we propose an algorithm that uses the Lagrangian dual in conjunction with some primal heuristic techniques that exploit the special structure of the problem. Finally, we present some computational test results along with comments on the further study.

Dynamic response evaluation of deep underground structures based on numerical simulation

  • Yoo, Mintaek;Kwon, Sun Yong;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.269-279
    • /
    • 2022
  • In this research, a series of dynamic numerical analysis were carried out for deep underground building structures under the various earthquake conditions. Dynamic numerical analysis model was developed based on the PLAXIS2D and calibrated with centrifuge test data from Kim et al. (2016). The hardening soil model with small strain stiffness (HSSMALL) was adopted for soil constitutive model, and interface elements was employed at the interface between plate and soil elements to simulate dynamic interaction effect. In addition, parametric study was performed for fixed condition and embedded depth. Finally, the dynamic behavior of underground building structure was thoroughly analyzed and evaluated.

A Research on Aerial Refueling Type and Flight Testing of Boom-Receptacle Systems for a Fixed-wing Aircraft (고정익 항공기 공중급유 유형 및 Boom-Receptacle 시스템 비행시험 평가 방안 연구)

  • Kim, Dae-wook;Kim, Chan-jo
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.70-80
    • /
    • 2022
  • An aerial refueling provides for extension of operational time and range for aircraft and enhances mission effectiveness, hence it application by most military aircrafts. The receiver aircraft should have the aerial refueling clearance that is established by performing technical and operational compatibility assessments to certify it for aerial refueling with a specific tanker model. The compatibility assessment includes aerial refueling handling qualities, functional, fuel, lighting system testing and it is finally verified through flight testing. However, since aerial refueling compatibility assessments have never been performed in Korea, there is no experience to determine the test requirements and the scope and size of the test program for a new development aircraft. This paper therefore introduces the common techniques of aerial refueling and aerial refueling flight test methods to understand the aerial refueling FCS (Flight Control System), OFP (operational flight program) and system validation, and aerial refueling envelope clearance of a fixed wing aircraft for a boom and receptacle refueling system that is being introduced into Korea Air Force.