• 제목/요약/키워드: Fixed ground

검색결과 427건 처리시간 0.025초

지면반발력을 이용한 인공족관절의 보행평가 기법에 관한 연구 (A Study on The Assessment Method of Gait Analysis for Ankle Assembly Using Ground Reaction Force)

  • 김성민;김성재;배하석;최병철
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.197-204
    • /
    • 2005
  • In this study, ground reaction force(GRF), absolute symmetry index(ASI) and coefficient of variation(CV) of fixed, single-axis and multi-axis prosthetic ankle assemblies were investigated to show the biomechanical evaluation for above knee amputees. In the experiments, 37 normal male volunteers, two male and two female AK amputees were tested with fixed, single-axis and multi-axis prosthetic ankle assembly. A gait analysis was carried out to derive the ratio of GRF to weight as the percentage of total stance phase for ten points. The results showed that fixed-axis ankle was superior to the other two ankle assemblies for the characteristic of forwarding and breaking forces. Multi-axis ankle was relatively superior to the other two ankle assemblies for gait balancing and movement of the center for mass. single-axis ankle was relatively superior to the other two ankle assemblies for CV and ASI of GRF.

가상고정점기법이 적용된 잔교식 구조물의 응답스펙트 럼해석법 개선사항 도출 연구 (Study on the Improvement of Response Spectrum Analysis of Pile-supported Wharf with Virtual Fixed Point)

  • 윤정원;한진태
    • 한국지진공학회논문집
    • /
    • 제22권6호
    • /
    • pp.311-322
    • /
    • 2018
  • As a method of seismic-design for pile-supported wharves, equivalent static analysis, response spectrum analysis, and time history analysis method are applied. Among them, the response spectrum analysis is widely used to obtain the maximum response of a structure. Because the ground is not modeled in the response spectrum analysis of pile-supported wharves, the amplified input ground acceleration should be calculated by ground classification or seismic response analysis. However, it is difficult to calculate the input ground acceleration through ground classification because the pile-supported wharf is build on inclined ground, the methods to calculate the input ground acceleration proposed in the standards are different. Therefore, in this study, the dynamic centrifuge model tests and the response spectrum analysis were carried out to calculate the appropriate input ground acceleration. The pile moment in response spectrum analysis and the dynamic centrifuge model tests were compared. As a result of comparison, it was shown that the response spectrum analysis results using the amplified acceleration in the ground surface were appropriate.

An Experimental Study of Aerodynamic Drag on High-speed Train

  • Kwon, Hyeok-bin;Lee, Dong-ho-;Baek, Je-hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권11호
    • /
    • pp.1267-1275
    • /
    • 2000
  • A series do wind tunnel tests were conducted for Korean high-speed train model with various shape components to assess the contributions to aerodynamic drag. In order to elucidate the ground effects, two different wind tunnels, one with a moving ground system and the other with a fixed ground, were used for the same model and the results of both were compared and analyzed in detail. The result show that a suitable ground simulation is necessary for the test of a train model with many cars and detailed underbody. But the relative difference of the drag coefficients for the modifications of shape components can be measured by a fixed ground test with high accuracy and low cost. The effects of the nose shape, the inter-cargap and the bogie-fairing on total drag were discussed and some ideas were prosed to decrease the aerodynamic resistance of high speed train.

  • PDF

강한 바람조건에서의 고정익 항공기 코스제어 기법 (Fixed-wing Aircraft Course Control in Significant Wind)

  • 이홍주
    • 한국군사과학기술학회지
    • /
    • 제22권3호
    • /
    • pp.408-415
    • /
    • 2019
  • Basically the dynamics of the fixed-wing aircraft is based on the airspeed which is relative to the wind, but when it comes to the track guidance and control, ground speed is the factor to be considered. Especially in the case of low-speed fixed-wing unmanned aerial vehicles the difference between the airspeed and the ground speed is significant depending on wind conditions, so that the heading control and the course control have to be designed separately. This paper represents the course control method using the pre-designed heading control gains which meet the desired characteristics. Also, waypoint guidance and control algorithms are suggested applying this control method. Finally the robustness of the proposed method is confirmed by 6-DoF nonlinear simulation.

Monitoring of tension force and load transfer of ground anchor by using optical FBG sensors embedded tendon

  • Kim, Young-Sang;Sung, Hyun-Jong;Kim, Hyun-Woo;Kim, Jae-Min
    • Smart Structures and Systems
    • /
    • 제7권4호
    • /
    • pp.303-317
    • /
    • 2011
  • A specially designed tendon, which is proposed by embedding an FBG sensor into the center king cable of a 7-wire strand tendon, was applied to monitor the prestress force and load transfer of ground anchor. A series of tensile tests and a model pullout test were performed to verify the feasibility of the proposed smart tendon as a measuring sensor of tension force and load transfer along the tendon. The smart tendon has proven to be very effective for monitoring prestress force and load transfer by measuring the strain change of the tendon at the free part and the fixed part of ground anchor, respectively. Two 11.5 m long proto-type ground anchors were made simply by replacing a tendon with the proposed smart tendon and prestress forces of each anchor were monitored during the loading-unloading step using both FBG sensor embedded in the smart tendon and the conventional load cell. By comparing the prestress forces measured by the smart tendon and load cell, it was found that the prestress force monitored from the FBG sensor located at the free part is comparable to that measured from the conventional load cell. Furthermore, the load transfer of prestressing force at the tendon-grout interface was clearly measured from the FBGs distributed along the fixed part. From these pullout tests, the proposed smart tendon is not only expected to be an alternative monitoring tool for measuring prestress force from the introducing stage to the long-term period for health monitoring of the ground anchor but also can be used to improve design practice through determining the economic fixed length by practically measuring the load transfer depth.

이동지면 효과를 고려한 위그선용 저 종횡비 날개의 양력특성에 대한 실험연구 (Experimental Study on Lift Characteristics Considering Moving Ground Effects of Low Aspect Ratio Wings for Wing-In Ground Effect Crafts)

  • 안병권;구성필;류재문;노인식
    • 대한조선학회논문집
    • /
    • 제48권5호
    • /
    • pp.381-389
    • /
    • 2011
  • In this study, we are focusing our attention on lift characteristics of the low aspect wings for Wing-In Ground effect crafts (WIG). Experimental measurements at an open-type wind tunnel are carried out and results are comparatively presented. In order to simulate the realistic ground condition in where the WIG craft is flying, moving ground is implemented by a conveyor belt rotating with the same velocity of the inflow. We consider two different wings (NACA0012 and DHMTU section) which have four different aspect ratios (0.5, 1.0, 1.5 and 2.0). Forces acting on the wings are measured and lift characteristics are elaborately investigated for various different conditions. In addition, end-plate effects are estimated. Results are validated by comparing with theoretic solutions of the symmetric airfoil. Present results show that ground effects are differently generated in moving or fixed ground conditions, and hence left characteristics are affected by the ground condition. Consequently, accurate aerodynamic forces acting on the WIG craft are guaranteed in a realistic moving ground condition.

지면에 고정되어 있지 않은 여유자유도 매니플래이터의 운동계획 알고리즘 (Motion Planning Algorithms for Kinematically Redundant Manipulator Not Fixed to the Ground)

  • 유동수;소병록;김희국
    • 제어로봇시스템학회논문지
    • /
    • 제10권10호
    • /
    • pp.869-877
    • /
    • 2004
  • This paper deals with motion planning algorithm for kinematically redundant manipulators that are not fixed to the ground. Differently from usual redundant manipulators fixed to the ground, the stability issue should be taken into account to prevent the robot from falling down. The typical ZMP equation, which is employed in human walking, will be employed to evaluate the stability. This work proposes a feed forward ZMP planning algorithm. The algorithm embeds the 'ZMP equations' indirectly into the kinematics of the kinematic model of a manipulator via a ZMP stability index The kinematic self motion of the redundant manipulator drives the system in such a way to keep or plan the ZHP at the desired position of the footprint. A sequential redundancy resolution algorithm exploiting the remaining kinematic redundancy is also proposed to enhance the performances of joint limit index and manipulability. In addition, the case exerted by external forces is taken into account. Through simulation for a 5 DOF redundant robot model, feasibility of the proposed algorithms is verified. Lastly, usual applications of the proposed kinematic model are discussed.

Soil-structure interaction effects on collapse probability of the RC buildings subjected to far and near-field ground motions

  • Iman Hakamian;Kianoosh Taghikhani;Navid Manouchehri;Mohammad Mahdi Memarpour
    • Earthquakes and Structures
    • /
    • 제25권2호
    • /
    • pp.99-112
    • /
    • 2023
  • This paper investigates the influences of Soil-Structure Interaction (SSI) on the seismic behavior of two-dimensional reinforced concrete moment-resisting frames subjected to Far-Field Ground Motion (FFGM) and Near-Field Ground Motion (NFGM). For this purpose, the nonlinear modeling of 7, 10, and 15-story reinforced concrete moment resisting frames were developed in Open Systems for Earthquake Engineering Simulation (OpenSees) software. Effects of SSI were studied by simulating Beam on Nonlinear Winkler Foundation (BNWF) and the soil type as homogenous medium-dense. Generally, the building resistance to seismic loads can be explained in terms of Incremental Dynamic Analysis (IDA); therefore, IDA curves are presented in this study. For comparison, the fragility evaluation is subjected to NFGM and FFGM as proposed by Quantification of Building Seismic Performance Factors (FEMA P-695). The seismic performance of Reinforced Concrete (RC) buildings with fixed and flexible foundations was evaluated to assess the probability of collapse. The results of this paper demonstrate that SSI and NFGM have significantly influenced the probability of failure of the RC frames. In particular, the flexible-base RC buildings experience higher Spectral acceleration (Sa) compared to the fixed-base ones subjected to FFGM and NFGM.

쌍계사 오층석탑모델에 대한 지진격리효과 진동대실험 (Shaking Table Test of the Model of Five-story Stone Pagoda of Sang-Gye-Sa Mounted on Base Isolation Systems)

  • 김재관;이원주;김영중;김병현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.331-338
    • /
    • 2001
  • Seismic performances of the base isolated model of Five Story Stone Pagoda were studied through shaking table tests. Friction pendulum system (FPS), Pure-friction system with laminated rubber bearing (LRB) and Ball with rubber bearing were selected fur the comparison of performances. Performances of specially designed isolation systems were tested dynamically using shaking table. The test results of isolated model are compared with those of fixed base model. Compared with fixed base model, the isolated model showed that it could withstand much higer intensity of earthquake motion. The Effective Peak Ground Acceleration (EPGA) value of isolated model when the top component tipped over was above twice of that value in case of fixed base model. According to the additional test results, the lower value of coefficient of friction than that of common frictional base isolation systems is more effective to protect the piled multi-block system of Pagoda against moderate intesity of ground motion.

  • PDF

풍화암 지반에 정착된 앵커의 인발저항 특성 (Pull - out Capacity of Ground Anchor in Weathered Rock)

  • 이승환;황의석;이봉열;김학문
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.435-442
    • /
    • 2002
  • Fluid Confirmation Tests(FCT) on 1500 ground Anchors install in weathered rock were carried out to investigate upper and lower limit of elastic elongation, frictional resistant of fixed anchor body, mobilized angle between anchor body and soil. All the measured data were analysed and compared with theoretical equations. The frictional angles of diaphragm wall and anchorage system in weathered rock showed nonlinear curve between upper and lower limit of standard elongation. The FCT results indicated that the frictional resistant angles increased with higher values of surcharge load. The quality assurance on the fixed anchor location was investigated by means of measuring elastic elongation during the FCT, and comparing these with theoretical design length, the quality of anchors in this particular site found to be above average standard. The results of this research works with provide valuable guide line on quality assurance of anchors system as well as resonable prediction of friction resistance between the fixed anchor body and the weathered rock.

  • PDF