• Title/Summary/Keyword: Fixed Wireless System

Search Result 234, Processing Time 0.023 seconds

Localization using Centroid in Wireless Sensor Networks (무선 센서 네트워크에서 위치 측정을 위한 중점 기 법)

  • Kim Sook-Yeon;Kwon Oh-Heum
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.5
    • /
    • pp.574-582
    • /
    • 2005
  • Localization in wireless sensor networks is essential to important network functions such as event detection, geographic routing, and information tracking. Localization is to determine the locations of nodes when node connectivities are given. In this paper, centroid approach known as a distributed algorithm is extended to a centralized algorithm. The centralized algorithm has the advantage of simplicity. but does not have the disadvantage that each unknown node should be in transmission ranges of three fixed nodes at least. The algorithm shows that localization can be formulated to a linear system of equations. We mathematically show that the linear system have a unique solution. The unique solution indicates the locations of unknown nodes are capable of being uniquely determined.

Global Healthcare Information System

  • Singh, Dhananjay;Lee, Hoon-Jae;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.365-368
    • /
    • 2008
  • This paper presents a new concept of IP-based wireless sensor networks and also introduces a routing protocol that is based on clustering for global healthcare information system. Low-power wireless personal area networks (LoWPANs) conform the standard by IEEE 802.15.4-2003 to IPv6 that makes 6lowpan. It characterized by low bit rate, low power, and low cost as well as protocol for wireless connections. The 6lowpan node with biomedical sensor devices fixed on the patient body area network that should be connected to the gateway in personal area network. Each 6lowpan nodes have IP-addresses that would be directly connected to the internet. With the help of IP-address service provider can recognize or analysis patient biomedical data from anywhere on globe by internet service provider equipments such as cell phone, PDA, note book. The system has been evaluated by technical verification, clinical test, user survey and current status of patient. We used NS-2.33 simulator for our prototype and also simulate the routing protocols. The result shows the performance of biomedical data packets in multi-hope routing as well as represents the topology of the networks.

  • PDF

Performance Optimization of Two-Way AF Relaying in Asymmetric Fading Channels

  • Qi, Yanyan;Wang, Xiaoxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4432-4450
    • /
    • 2014
  • It is widely observed that in practical wireless cooperative communication systems, different links may experience different fading characteristics. In this paper, we investigate into the outage probability and channel capacity of two-way amplify-and-forward (TWAF) relaying systems operating over a mixed asymmetric Rician and Rayleigh fading scenario, with different amplification policies (AP) adopted at the relay, respectively. As TWAF relay network carries concurrent traffics towards two opposite directions, both end-to-end and overall performance metrics were considered. In detail, both uniform exact expressions and simplified asymptotic expressions for the end-to-end outage probability (OP) were presented, based on which the system overall OP was studied under the condition of the two source nodes having non-identical traffic requirements. Furthermore, exact expressions for tight lower bounds as well as high SNR approximations of channel capacity of the considered scenario were presented. For both OP and channel capacity, with different APs, effective power allocation (PA) schemes under different constraints were given to optimize the system performance. Extensive simulations were carried out to verify the analytical results and to demonstrate the impact of channel asymmetry on the system performance.

Wearable Approach of ECG Monitoring System for Wireless Tele-Home Care Application

  • Kew, Hsein-Ping;Noh, Yun-Hong;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.337-340
    • /
    • 2009
  • Wireless tele-home-care application gives new possibilities for ECG (electrocardiogram) monitoring system with wearable biomedical sensors. Thus, continuously development of high convenient ECG monitoring system for high-risk cardiac patients is essential. This paper describes to monitor a person's ECG using wearable approach. A wearable belt-type ECG electrode with integrated electronics has been developed and has proven long-term robustness and monitoring of all electrical components. The measured ECG signal is transmitted via an ultra low power consumption wireless sensor node. ECG signals carry a lot clinical information for a cardiologist especially the R-peak detection in ECG. R-peak detection generally uses the threshold value which is fixed thus it bring errors due to motion artifacts and signal size changes. Variable threshold method is used to detect the R-peak which is more accurate and efficient. In order to evaluate the performance analysis, R-peak detection using MIT-BIH databases and Long Term Real-Time ECG is performed in this research. This concept able to allow patient to follow up critical patients from their home and early detecting rarely occurrences of cardiac arrhythmia.

  • PDF

Cluster-based AODV for ZigBee Wireless Measurement and Alarm Systems (ZigBee 무선계측/경보 시스템을 위한 클러스터 기반의 AODV)

  • Park, Jae-Won;Kim, Hong-Rok;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.920-926
    • /
    • 2007
  • Establishing a fixed path for the message delivery through a wireless network is impossible due to the mobility. Among the number of routing protocols that have been proposed for wireless ad-hoc networks, the AODV(Ad-hoc On-demand Distance Vector) algorithm is suitable in the case of highly dynamic topology changes, along with ZigBee Routing(ZBR), with the exception of route maintenance. Accordingly, this paper introduces a routing scheme focusing on the energy efficiency and route discovery time for wireless alarm systems using IEEE 802.15.4-based ZigBee. Essentially, the proposed routing algorithm utilizes a cluster structure and applies ZBR within a cluster and DSR (Dynamic Source Routing) between clusters. The proposed algorithm does not require a routing table for the cluster heads, as the inter-cluster routing is performed using DSR. The performance of the proposed algorithm is evaluated and compared with ZBR using an NS2 simulator. The results confirm that the proposed Cluster-based AODV (CAODV) algorithm is more efficient than ZBR in terms of the route discovery time and energy consumption.

Optimal Harvest-Use-Store Design for Delay-Constrained Energy Harvesting Wireless Communications

  • Yuan, Fangchao;Jin, Shi;Wong, Kai-Kit;Zhang, Q.T.;Zhu, Hongbo
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.902-912
    • /
    • 2016
  • Recent advances in energy harvesting (EH) technology have motivated the adoption of rechargeable mobile devices for communications. In this paper, we consider a point-to-point (P2P) wireless communication system in which an EH transmitter with a non-ideal rechargeable battery is required to send a given fixed number of bits to the receiver before they expire according to a preset delay constraint. Due to the possible energy loss in the storage process, the harvest-use-and-store (HUS) architecture is adopted. We characterize the properties of the optimal solutions, for additive white Gaussian channels (AWGNs) and then block-fading channels, that maximize the energy efficiency (i.e., battery residual) subject to a given rate requirement. Interestingly, it is shown that the optimal solution has a water-filling interpretation with double thresholds and that both thresholds are monotonic. Based on this, we investigate the optimal double-threshold based allocation policy and devise an algorithm to achieve the solution. Numerical results are provided to validate the theoretical analysis and to compare the optimal solutions with existing schemes.

SRN Hierarchical Modeling for Packet Retransmission and Channel Allocation in Wireless Networks (무선망에서 패킷 재전송과 채널할당 성능분석을 위한 SRN 계층 모델링)

  • 노철우
    • The KIPS Transactions:PartC
    • /
    • v.8C no.1
    • /
    • pp.97-104
    • /
    • 2001
  • In this paper, we present a new hierarchical model for performance analysis of channel allocation and packet service protocol in wireless n network. The proposed hierarchical model consists of two parts : upper and lower layer models. The upper layer model is the structure state model representing the state of the channel allocation and call service. The lower layer model, which captures the performance of the system within a given structure state, is the wireless packet retransmission protocol model. These models are developed using SRN which is an modeling tool. SRN, an extension of stochastic Petri net, provides compact modeling facilities for system analysis. To get the performance index, appropriate reward rates are assigned to its SRN. Fixed point iteration is used to determine the model parameters that are not available directly as input. That is, the call service time of the upper model can be obtained by packet delay in the lower model, and the packet generation rates of the lower model come from call generation rates of the upper model.

  • PDF

Design and Implementation Wake-up Module for Wireless Sensor Node using Dynamic Reference Voltage Demodulation Circuit (동적 기준전압 복조회로를 이용한 WBAN/USN 센서노드용 웨이크 업 모듈의 설계 및 구현)

  • Kim, Jong-Hong;Hwang, Ji-Hun;Park, Jun-Seok;Seong, Yeong-Rak;Oh, Ha-Ryoung
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.3
    • /
    • pp.152-156
    • /
    • 2009
  • This paper designs and implements wake up module for WBAN/USN sensor node which is using dynamic reference voltage demodulation circuit. When a comparator is used in a system for detecting received voltage level, comparator must have a reference voltage. However, the reference voltage is fixed, the system can communicate only a few range because received voltage level is changing widely due to distance of the wireless sensor nodes. Therefore, the proposed wake up module employs a dynamic reference voltage demodulation circuit for increasing communication range.

  • PDF

Design and Evaluation of a Contention-Based High Throughput MAC with Delay Guarantee for Infrastructured IEEE 802.11WLANs

  • Kuo, Yaw-Wen;Tsai, Tung-Lin
    • Journal of Communications and Networks
    • /
    • v.15 no.6
    • /
    • pp.606-613
    • /
    • 2013
  • This paper proposes a complete solution of a contention-based medium access control in wireless local networks to provide station level quality of service guarantees in both downstream and upstream directions. The solution, based on the mature distributed coordination function protocol, includes a new fixed contention window backoff scheme, a tuning procedure to derive the optimal parameters, a super mode to mitigate the downstream bottleneck at the access point, and a simple admission control algorithm. The proposed system guarantees that the probability of the delay bound violation is below a predefined threshold. In addition, high channel utilization can be achieved at the same time. The numerical results show that the system has advantages over the traditional binary exponential backoff scheme, including efficiency and easy configuration.

The Wireless Radiation Measurement Using Embedded System (임베디드 시스템에 의한 방사선의 무선계측)

  • Kim, Hyong-Jong;Park, Dae-Sung;Lee, Sang-Bock
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • Radiation is used in various field, including medical science, engineering science, agricultural science and other industrial fields and the use frequency of radiation is increasing thanks to the development of radiation technology. Although radiation contributes to the mankind so much, we must pay attention to radiation damage by its influence on human body. To use radiation properly and prevent the radiation damage, it is necessary to measure radiation exactly and to practice thorough research and education on the basis of this measurement. In this study, I suggest the method to measure radiation wirelessly without the limit of time and space, not approaching radiation having a harmful effect on human body by using ubiquitous computing technology. For the realization of suggested method, the wireless transmission technology of CDMA network is used and after installing embedded system in PDA, the measurement value is displayed through accessing CDMA network with PDA in radiation measurement system of having fixed IP. If we use the proposed method of this study, we don't have to approach radiation that is harmful to the human and can read the measurement value that is marked in PDA through CDMA network by radiation measurement system of having fixed IP.

  • PDF