• Title/Summary/Keyword: Fixed Wing UAV

Search Result 86, Processing Time 0.028 seconds

A Study on Steady-state Performance Simulation of Smart UAV Propulsion System (신개념 비행체 추진시스템의 정상상태 성능모사 기법 연구)

  • 공창덕;강명철;기자영;양수석;이창호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.177-182
    • /
    • 2003
  • In this study, a performance model of the Smart UAV propulsion system with ducts, tip jets and variable main nozzle, which has flight capability of the rotary wing mode for the take-off/landing and low speed forward flight as welt as the fixed wing mode for high speed forward flight, has been newly developed. With the proposed model, steady-state performance analysis was performed at various flight modes and conditions, such as rotary wing mode, fixed wing mode, compound wing, mode altitude and flight speed. In investigation of performance analysis, it was noted that the operational capability of the propulsion system was limited due to the duct losses depending on each flight mode, and the limitation with the altitude variation case has much greater than that with the flight speed variation case.

  • PDF

Vision-based Guidance for Loitering over a Target

  • Park, Sanghyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.366-377
    • /
    • 2016
  • This paper presents a vision-based guidance method that allows a fixed-wing aircraft to orbit around a target at a given radius. The guidance method uses a simple formula that regulates a relative side-bearing angle estimated by a vision system. The global asymptotic stability of the associated guidance law is demonstrated, and a linear analysis is performed to facilitate the proper selection of the relevant control parameters. A flight experiment is presented to demonstrate the feasibility and performance of the proposed guidance method.

Estimation of Fractional Vegetation Cover in Sand Dunes Using Multi-spectral Images from Fixed-wing UAV

  • Choi, Seok Keun;Lee, Soung Ki;Jung, Sung Heuk;Choi, Jae Wan;Choi, Do Yoen;Chun, Sook Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.431-441
    • /
    • 2016
  • Since the use of UAV (Unmanned Aerial Vehicle) is convenient for the acquisition of data on broad or inaccessible regions, it is nowadays used to establish spatial information for various fields, such as the environment, ecosystem, forest, or for military purposes. In this study, the process of estimating FVC (Fractional Vegetation Cover), based on multi-spectral UAV, to overcome the limitations of conventional methods is suggested. Hence, we propose that the FVC map is generated by using multi-spectral imaging. First, two types of result classifications were obtained based on RF (Random Forest) using RGB images and NDVI (Normalized Difference Vegetation Index) with RGB images. Then, the result map was reclassified into vegetation and non-vegetation. Finally, an FVC map-based RF were generated by using pixel calculation and FVC map-based GI (Gutman and Ignatov) model were indirectly made by fixed parameters. The method of adding NDVI shows a relatively higher accuracy compared to that of adding only RGB, and in particular, the GI model shows a lower RMSE (Root Mean Square Error) with 0.182 than RF. In this regard, the availability of the GI model which uses only the values of NDVI is higher than that of RF whose accuracy varies according to the results of classification. Our results showed that the GI mode ensures the quality of the FVC if the NDVI maintained at a uniform level. This can be easily achieved by using a UAV, which can provide vegetation data to improve the estimation of FVC.

Development of Autonomous Behavior Software based on BDI Architecture for UAV Autonomous Mission (무인기 자율임무를 위한 BDI 아키텍처 기반 자율행동 소프트웨어 개발)

  • Yang, Seung-Gu;Uhm, Taewon;Kim, Gyeong-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.312-318
    • /
    • 2022
  • Currently, the Republic of Korea is facing the problem of a decrease in military service resources due to the demographic cliff, and is pursuing military restructuring and changes in the military force structure in order to respond to this. In this situation, the Army is pushing forward the deployment of a drone-bot combat system that will lead the future battlefield. The battlefield of the future will be changed into an integrated battlefield concept that combines command and control, surveillance and reconnaissance, and precision strike. According to these changes, unmanned combat system, including dronebots, will be widely applied to combat situations that are high risk and difficult for humans to perform in actual combat. In this paper, as one of the countermeasures to these changes, autonomous behavior software with a BDI architecture-based decision-making system was developed. The autonomous behavior software applied a framework structure to improve applicability to multiple models. Its function was verified in a PC-based environment by assuming that the target UAV is a battalion-level surveillance and reconnaissance UAV.

Comparison of Topographic Surveying Results using a Fixed-wing and a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (고정익 무인항공기(드론)와 보급형 회전익 무인항공기를 이용한 지형측량 결과의 비교)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • Recently, many studies have been conducted to use fixed-wing and rotary-wing unmanned aerial vehicles (UAVs, Drones) for topographic surveying in open-pit mines. Because the fixed-wing and rotary-wing UAVs have different characteristics such as flight height, speed, time and performance of mounted cameras, their results of topographic surveying at a same site need to be compared. This study selected a construction site in Yangsan-si, Gyeongsangnam-do, Korea as a study area and compared the topographic surveying results from a fixed-wing UAV (SenseFly eBee) and a popular rotary-wing UAV (DJI Phantom2 Vision+). As results of data processing for aerial photos taken from eBee and Phantom2 Vision+, orthomosaic images and digital surface models with about 4 cm grid spacing could be generated. Comparisons of the X, Y, Z-coordinates of 7 ground control points measured by differential global positioning system and those determined by eBee and Phantom2 Vision+ revealed that the root mean squared errors of X, Y, Z-coordinates were around 10 cm, respectively.

Design and Optimization Study on the Multi Flight Modes Canard Rotor/Wing Aircraft with Development of Sizing Program (사이징 프로그램 개발을 통한 다중 비행 모드 Canard Rotor/Wing 항공기의 형상 최적설계)

  • Kim, Jong-Hwan;Kim, Min-Ji;Lee, Jae-Woo;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.22-31
    • /
    • 2005
  • A design study was conducted for a new concept aircraft(Canard Rotor/Wing: CRW) that has the capability of dual mode flight, a rotorcraft and a fixed wing mode. The CRW can show a vertical take off/landing and a high speed/efficiency cruise performance simultaneously. It is not surprising to develop a new sizing code for this class of aircraft because conventional sizing codes developed solely for either the rotary wing or the fixed wing aircraft are not adequate to design a dual mode aircraft operated both by the rotary wing through tip jet effux and the fixed wing lift. Thus, a new design code was developed based on the conventional sizing code by adding some features including rotor performance, duct flow, and engine flow analysis, hence could eventually predict the performance of reaction driven rotor, the flight performance and the flight characteristics. The various design parameters were investigated to find their influences on the flight performance then, a small UAV(Unmanned Aircraft Vehicle) of 1500 lbs class was optimally designed to have minimum weight using the developed sizing code.

Wind and Airspeed Error Estimation with GPS and Pitot-static System for Small UAV

  • Park, Sanghyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.344-351
    • /
    • 2017
  • This paper presents a method to estimate steady wind and airspeed bias error using an aircraft with GPS and airspeed sensor. The estimation uses the vector relation between the inertial, air, and wind velocities through a novel design of an extended Kalman filter. The observability analysis is also presented to show that the aircraft is required to keep changing its flight direction for the desired observability. The feasibility and performance of the proposed algorithm is demonstrated through simulations and flight experiments.

An Aerodynamic Modeling and Simulation of a Folding Tandem Wing Type Aerial Launching UAV (접이식 직렬날개형 공중투하 무인비행체의 공력 모델링 및 시뮬레이션)

  • Lee, Seungjin;Lee, Jungmin;Ahn, Jeongwoo;Park, Jinyong
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2018
  • The aerial launching UAV(Unmanned Aerial Vehicle) mainly uses a set of folding tandem wings to maximize flight performance and minimize the space required for mounting in a mothership. This folding tandem wing has a unique aerodynamic problem that is different from the general type of fixed wing aircraft, such as the rear wing interference problem caused by the wing of the front wing wake and vortex, and the imbalance of the pivot moment applied to the front and rear wings when the wing is deployed. In this paper, we have modeled and simulated various cases through computational fluid dynamics based on the finite volume method and analyzed various aerodynamic phenomena of the tandem wing type aircraft. We find that the front wing shall be installed higher than the rear for minimizing the wake influence and the rear wing can be deployed faster than the front because of the pivot moment due to aerodynamic forces. Also, considering the pivot moment due to aerodynamic force, the rear wing can be deployed much faster than the front wing. Therefore, it is necessary to consider it when developing the wing deploy mechanism.

Land Cover Classification with High Spatial Resolution Using Orthoimage and DSM Based on Fixed-Wing UAV

  • Kim, Gu Hyeok;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • An UAV (Unmanned Aerial Vehicle) is a flight system that is designed to conduct missions without a pilot. Compared to traditional airborne-based photogrammetry, UAV-based photogrammetry is inexpensive and can obtain high-spatial resolution data quickly. In this study, we aimed to classify the land cover using high-spatial resolution images obtained using a UAV. An RGB camera was used to obtain high-spatial resolution orthoimage. For accurate classification, multispectral image about same areas were obtained using a multispectral sensor. A DSM (Digital Surface Model) and a modified NDVI (Normalized Difference Vegetation Index) were generated using images obtained using the RGB camera and multispectral sensor. Pixel-based classification was performed for twelve classes by using the RF (Random Forest) method. The classification accuracy was evaluated based on the error matrix, and it was confirmed that the proposed method effectively classified the area compared to supervised classification using only the RGB image.

Optimal Path Planner Considering Real Terrain for Fixed-Wing UAVs (실제지형을 고려한 고정익 무인항공기의 최적 경로계획)

  • Lee, Dasol;Shim, David Hyunchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1272-1277
    • /
    • 2014
  • This article describes a path planning algorithm for fixed-wing UAVs when a real terrain should be considered. Nowadays, many UAVs are required to perform mission flights near given terrain for surveillance, reconnaissance, and infiltration, as well as flight altitude of many UAVs are relatively lower than typical manned aerial vehicles. Therefore, real terrain should be considered in path planning algorithms of fixed-wing UAVs. In this research, we have extended a spline-$RRT^*$ algorithm to three-dimensional planner. The spline-$RRT^*$ algorithm is a $RRT^*$ based algorithm, and it takes spline method to extend the tree structure over the workspace to generate smooth paths without any post-processing. Direction continuity of the resulting path is guaranteed via this spline technique, and it is essential factor for the paths of fixed-wing UAVs. The proposed algorithm confirm collision check during the tree structure extension, so that generated path is both geometrically and dynamically feasible in addition to direction continuity. To decrease degrees of freedom of a random configuration, we designed a function assigning directions to nodes of the graph. As a result, it increases the execution speed of the algorithm efficiently. In order to investigate the performance of the proposed planning algorithm, several simulations are performed under real terrain environment. Simulation results show that this proposed algorithm can be utilized effectively to path planning applications considering real terrain.