• 제목/요약/키워드: Fixed Geometry

검색결과 194건 처리시간 0.034초

Submerged Horizontal and Vertical Membrane Wave Barrier

  • Kee S.T.
    • 한국해양공학회지
    • /
    • 제19권2호
    • /
    • pp.1-11
    • /
    • 2005
  • In the present paper, the hydrodynamic properties of a Rahmen type flexible porous breakwater with dual fixed pontoon system interacting with obliquely or normally incident small amplitude waves are numerically investigated. This system is composed of dual vertical porous membranes hinged at the side edges of dual fixed pontoons, and a submerged horizontal membrane that both ends are hinged at the steel frames mounted pontoons. The dual vertical membranes are extended downward and hinged at bottom steal frame fixed into seabed. The wave blocking and dissipation mechanism and its effects of permeability, Rahmen type membrane and pontoon geometry, pretensions on membranes, relative dimensionless wave number, and incident wave headings are thoroughly examined.

압전 벤더의 효과적인 모델링 기법 (An Effective Quasi-static Modeling of the Piezoelectric Benders)

  • 박종규;문원규
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.133-142
    • /
    • 2004
  • In this article, the constitutive relations of three types of piezoelectric benders, which are a unimorph bender, a bimorph bender and a triple-layer bender, are derived based on the beam theory under the quasi-static equilibrium condition. The relation coefficients are described as the geometry and material properties of the benders. More general constitutive relations involving fixed-free, fixed-roll, and fixed-simply supported boundary conditions under the inconsistent length condition between the piezoelectric layer and the nonpiezoelectric one are discussed. The complicated constitutive relations can be easily calculated and checked by using the symbolic function in ‘Mathematica’. The relation coefficients for the benders are plotted in three dimensional graph using the developed program.

무선 센서 네트워크에서의 2단계 위치 추정 알고리즘 (Two-Phase Localization Algorithm in Wireless Sensor Networks)

  • 송하주;김숙연;권오흠
    • 한국멀티미디어학회논문지
    • /
    • 제9권2호
    • /
    • pp.172-188
    • /
    • 2006
  • 본 논문은 무선 센서 네트워크(wireless sensor network)에서 노드들의 위치 추정 문제를 다룬다. 위치 추정을 위한 기존의 기법들은 인접한 노드들 간의 거리를 이용하여 자신의 위치를 추정하는 LGB 기법과 멀리 떨어진 노드들 간의 거리를 추정하여 위치 추정에 이용하는 GGB 기법으로 분류할 수 있다. 그러나 LGB 기법의 경우 상대적으로 정확도가 낮은 거리 측정 기법 하에서는 적합하지 않은 면이 있고, 반면 GGB 기법의 경우 장애물이 있거나 혹은 노드들이 분포한 영역이 사각형이나 원형과 같은 정형이 아닌 경우에는 적용하기 어려운 면이 있다. 본 논문에서는 두 가지 기법을 절충하여 부정확한 거리 측정 기법 하에서 장애물이 있거나 비정형의 영역 내에 분포한 노드들에 대해서도 위치 추정을 가능하게 하는 새로운 위치 추정 알고리즘을 제안하고, 그 성능을 모의실험을 통해서 비교 분석한다.

  • PDF

Vibrations of an axially accelerating, multiple supported flexible beam

  • Kural, S.;Ozkaya, E.
    • Structural Engineering and Mechanics
    • /
    • 제44권4호
    • /
    • pp.521-538
    • /
    • 2012
  • In this study, the transverse vibrations of an axially moving flexible beams resting on multiple supports are investigated. The time-dependent velocity is assumed to vary harmonically about a constant mean velocity. Simple-simple, fixed-fixed, simple-simple-simple and fixed-simple-fixed boundary conditions are considered. The equation of motion becomes independent from geometry and material properties and boundary conditions, since equation is expressed in terms of dimensionless quantities. Then the equation is obtained by assuming small flexural rigidity. For this case, the fourth order spatial derivative multiplies a small parameter; the mathematical model converts to a boundary layer type of problem. Perturbation techniques (The Method of Multiple Scales and The Method of Matched Asymptotic Expansions) are applied to the equation of motion to obtain approximate analytical solutions. Outer expansion solution is obtained by using MMS (The Method of Multiple Scales) and it is observed that this solution does not satisfy the boundary conditions for moment and incline. In order to eliminate this problem, inner solutions are obtained by employing a second expansion near the both ends of the flexible beam. Then the outer and the inner expansion solutions are combined to obtain composite solution which approximately satisfying all the boundary conditions. Effects of axial speed and flexural rigidity on first and second natural frequency of system are investigated. And obtained results are compared with older studies.

Structural Optimization of Cantilever Beam in Conjunction with Dynamic Analysis

  • Zai, Behzad Ahmed;Ahmad, Furqan;Lee, Chang-Yeol;Kim, Tae-Ok;Park, Myung-Kyun
    • 한국가스학회지
    • /
    • 제15권5호
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, an analytical model of a cantilever beam having a midpoint load is considered for structural optimization and design. This involves creation of the geometry through a parametric study of all design variables. For this purpose, the optimization of the cantilever beam was elaborated in order to find the optimum geometry which minimizes its volume eventually for minimum weight by FEM (finite element method) analysis. Such geometry can be obtained by different combinations of width and height, so that the beam may have the same cross-sectional area, yet different dynamic behavior. So for optimum safe design, besides minimum volume it should have minimum vibration as well. In order to predict vibration, different dynamic analyses were performed simultaneously to identify the resonant frequencies and mode shapes belonging to the lowest three modes of vibration. Next, by introducing damping effects, the tip displacement and bending stress at the fixed end was evaluated under dynamic loads of varying frequency. Investigation of the results clearly shows that only structural analysis is not enough to predict the optimum values of dimension for safe design it must be aided by dynamic analysis as well.

시멘트 페이스트의 슬럼프 유동 모사를 위한 분석적 해의 검토 (Review on Analytical Solutions for Slump Flow of Cement Paste)

  • 윤태영
    • 한국도로학회논문집
    • /
    • 제18권3호
    • /
    • pp.21-32
    • /
    • 2016
  • PURPOSES : In this paper, the analytical solutions suggested to simulate the behavior of rheological fluids were rigorously re-derived and investigated for fixed conditions to evaluate the applicability for the solutions on a mini-cone slump test of cement paste. The selected solutions with proper boundary conditions can be used as reference solutions to evaluate the performance of numerical simulation approaches, such as the discrete element method. METHODS : The slump, height, and spread radius for the given boundary and yield stress conditions that are determined by five different analytical solutions are compared. RESULTS : The analytical solution based on fluid mechanics for pure shear flow shows similar results to that for intermediate flow at low yield stresses. The fluid mechanics-based analytical solution resulted in a very similar trend to the geometry-based analytical solution. However, it showed a higher slump at high yield stress and lower slump at low yield stress ranges than the geometry-based analytical model. The analytical solution based on the mini-cone geometry was not significantly affected by the yield criteria, such as von Mises and Tresca. CONCLUSIONS : Even though differences among the analytical solutions in terms of slump and spread radius existed, the difference can be considered insignificant when the solutions were used as reference to evaluate the appropriateness of numerical approaches, such as the discrete element method.

노즐 형상과 기판의 위치 변화가 초음속 유동에 미치는 영향에 관한 수치해석 연구 (Numerical study on the effects of nozzle geometry and substrate location in the supersonic flow)

  • 박정재;윤석구;김호영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.58.2-58.2
    • /
    • 2010
  • This paper deals with the simulation of solid particle coating technology via supersonic nozzle in vacuum environment to devote as an aerosol-deposition device. In order to improve efficiencies of nozzle and coating process, effects of shockwave, nozzle geometry, and substrate location were studied computationally under a fixed chamber pressure of 0.01316 bar which is nearly vacuous. Shockwave is the important factor affect to entire flow because shockwave in the jet flow dissipates the kinetic energy of the flow in the supersonic condition. Results show that various nozzle geometries have significant effect on the supersonic flow and we know that the supersonic nozzle should be optimized to minimize the loss of the flow. Another parameter, the distance between substrate and nozzle tip, shows little effect in this study.

  • PDF

On Design of Visual Servoing using an Uncalibrated Camera in 3D Space

  • Morita, Masahiko;Kenji, Kohiyama;Shigeru, Uchikado;Lili, Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1121-1125
    • /
    • 2003
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. We use a pinhole camera model as the camera one. The essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. These play an important role in designing visual servoing. For easy understanding of the proposed method we first show a design in case of the calibrated camera. The design is constructed by 4 steps and the directional motion of the robot arm is fixed only to a constant direction. This means that an estimated epipole denotes the direction, to which the robot arm translates in 3D space, on the image plane.

  • PDF

생물학적 DNA 구조와 트러스구조의 융합으로 개발한 바람개비형 모델 선행연구 (Preliminary Development of Pinwheel Model Created by Convergent Truss Structure with Biological DNA Structure)

  • 최정호
    • 한국융합학회논문지
    • /
    • 제7권4호
    • /
    • pp.181-190
    • /
    • 2016
  • The objective of this study is to find the effective stiffness and compressive strengths of a unit-cell pinwheel truss and double pinwheel truss model designed following a double helical geometry similar to that of the DNA (deoxyribonucleic acid) structure in biology. The ideal solution for their derived relative density is correlated with a ratio of the truss thickness and length. To validate the relative stiffness or relative strength, ABAQUS software is used for the computational model analysis on five models having a different size of truss diameter from 1mm to 5mm. Applied material properties are stainless steel type 304. The boundary conditions applied were fixed bottom and 5 mm downward displacement. It was assumed that the width, length, and height are all equal. Consequently, it is found that the truss model has a lower effective stiffness and a lower effective yielding strength.

현절비가 터보펌프 인듀서의 성능에 미치는 영향 (Effect of Solidity on the Performance of Turbopump Inducer)

  • 홍순삼;최창호;김진한
    • 대한기계학회논문집B
    • /
    • 제28권4호
    • /
    • pp.382-388
    • /
    • 2004
  • The hydraulic and suction performance of an inducer varies sensitively with the inducer geometry and this paper deals with solidity as the inducer geometry parameter. The typical performance characteristics of a basic inducer was investigated and tests with another three inducers of which the solidity is different from each other were performed, so the effect of solidity on the inducer performance was experimentally investigated. For a fixed flow coefficient, required NPSH of the inducer did not follow the conventional similarity rule, so this paper suggested another empirical formula. The hydraulic and suction performance was measured at four cases of the tip solidity ranged from 1.32 to 2.76. As long as the tip solidity had the value above 1.84, the hydraulic and suction performance of the inducer increased with decrease in the tip solidity. With further decrease in the tip solidity up to 1.32, however, inducer head decreased and the suction performance dropped sharply.