• Title/Summary/Keyword: Fixed Bed Reactor

Search Result 245, Processing Time 0.022 seconds

Recovery of BTEX-aromatics from Post-consumer Polypropylene Fraction by Pyrolysis Using a Fluidized Bed (유동층(流動層) 급속열분해(急速熱分解)에 의한 폐(廢) Polypropylene fraction으로부터 BTEX-aromatics의 회수(回收))

  • Cho, Min-Hwan;Jeong, Soo-Hwa;Kim, Joo-Sik
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.50-56
    • /
    • 2008
  • A polypropylene fraction collected from the stream of post-consumer plastics was pyrolyzed. The aim of this study is to observe the dependence of yield of BTEX-aromatics normally used as solvent on the reaction temperature. To reach the goal, three experiments were carried out at different temperature between 650 and $700^{\circ}C$, using a fluidized bed reactor that shows an excellent heat transfer. In the experiments, product gases were used as a fluidizing medium to maximize the amount of BTEX-aromatics at fixed flow rate and feed rate during the pyrolysis. Oil, gas and char were obtained as product fractions. Product gases were analyzed with GCs(TCD, FID) and with a GC-MS system for qualitative analysis. For an accurate analysis of product oil, the product oil was distilled under vacuum, and separated the distillation residues from oil fractions that were actually analyzed with a GC-MS system. As the reaction temperature went higher, the content of BTEX-aromatics increased. The maximal yield of BTEX-aromatics was obtained at $695^{\circ}C$ with a value of about 30%. The main compounds of product gas were $CH_4$, $C_2H_4$, $C_2H_6$, $C_3H_6$, $C_4H_{10}$ and the product gas had an higher heating value about 45MJ/kg. It could be used as a heat source for a pyrolysis plant or for other fuel applications.

The Influence of a Second Metal on the Ni/SiC Catalyst for the Methanation of Syngas

  • Song, Lanlan;Yu, Yue;Wang, Xiaoxiao;Jin, Guoqiang;Wang, Yingyong;Guo, XiangYun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.678-687
    • /
    • 2014
  • The catalytic performance of silicon carbide supported nickel catalysts modified with or without second metal (Co, Cu and Zn) for the methanation of CO has been investigated in a fixed-bed reactor using a feed consisting of 25% CO and 75% $H_2$ without any diluent gas. It has been found that the introduction of Co species can clearly improve the catalytic activity of Ni/SiC catalyst, whereas the addition of Cu or Zn can result in a significant decrease in the catalytic activity. The characterizations by means of XRD, TEM, XPS, CO-TPD and $H_2$-TPR indicate that the addition of Co could decrease the particle size of active metal, increase active sites on the surface of methanation catalyst, improve the chemisorption of CO and enhance the reducibility of methanation catalysts. Additionally, the special interaction between Co species and Ni species is likely favorable for the dissociation of adsorbed CO on the surface of catalyst, and this may also contribute to the high activity of 5Co-Ni/SiC catalyst for CO methanation reaction. For 5Cu-Ni/SiC catalyst and 5Zn-Ni/SiC catalyst, Cu and Zn species could cover partial nickel particles and decrease the chemisorption amount of CO. These could be responsible for the low methanation activity. In addition, a 150h stability test under 2 MPa and $300^{\circ}C$ showed that 5Co-Ni/SiC catalyst was very stable for CO methanation reaction.

A Study on the Vanadium Oxides Catalyst in the Ammoxidation of Methylpyrazine into Cyanopyrazine (메틸피라진으로부터 시아노피라진으로의 암옥시화반응에서의 산화 바나듐 촉매에 관한 연구)

  • Kwon Yong Seung;Park Sang-Eon;Lee Young K.
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.445-451
    • /
    • 1990
  • The catalytic ammoxidation of methylpyrazine into cyanopyrazine over a supported vanadium oxides catalyst on ${\gamma}$-alumina was studied in a continuous-flow fixed bed reactor. Various crystalline phases of vanadium oxides were obtained depending on reduction temperatures. And also the activities for the reaction of methylpyrazine into cyanopyrazine were affected by their major oxidation states of the corresponding crystalline phases. The 10${\%}$ vanadium oxides loaded ${\gamma}$-alumina catalyst, which was reduced at 600$^{\circ}C$ under the hydrogen flow for 2 hours, showed the highest activity and the highest selectivity on cyanopyrazine in the ammoxidation of methylpyrazine.Its major crystalline phase was V$_2$O$_3$ with the presence of V$_6$O$_{13}$ and V$_2$O$_4$(VO$_2$) together. And this coexistance seemed to enhance the activity.

  • PDF

Pretreatment Effect on CO Oxidation over Highly Ordered Mesoporous Silver Catalyst

  • Shon, Jeong-Kuk;Park, Jung-Nam;Hwang, Seong-Hee;Jin, Mingshi;Moon, Ki-Young;Boo, Jin-Hyo;Han, Tae-Hee;Kim, Ji-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.415-418
    • /
    • 2010
  • Highly ordered mesoporous silver material was successfully synthesized from a mesoporous silica template (KIT-6) with 3-D channel structure using the nano-replication method. The effects of $H_2$ or $O_2$ pretreatments on the catalytic performance of the mesoporous silver were investigated using a temperature programmed CO oxidation technique in a fixed bed reactor. The mesoporous silver material that was pretreated with $H_2$ exhibited an excellent catalytic activity compared to the as-prepared and $O_2$-pretreated catalysts. Moreover, this present mesoporous silver material showed good catalytic stability. For the CO oxidation, the apparent activation energy of the $H_2$-pretreated mesoporous silver catalyst was $61{\pm}0.5\;kJ\;mol^{-1}$, which was also much lower than the as-prepared ($132{\pm}1.5\;kJ\;mol^{-1}$) and $O_2$-pretreated ($124{\pm}1.4\;kJ\;mol^{-1}$) catalysts.

Complete Oxidation of Volatile Organic Compounds(BTX) over the Supported Transition Metal Catalysts (전이금속 담지 촉매상에서 휘발성유기화합물(BTX)의 완전산화)

  • Kim, Sang-Chai;Seo, Seong-Gyu;Yu, Eui-Yeon
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.17-25
    • /
    • 2000
  • Catalytic oxidation of volatile organic compounds(benzene, toluene, xylene) over transition metals/ALO-6 catalysts was investigated in a fixed bed flow reactor system at atmospheric pressure. The orders of catalytic activities for the complete oxidation of toluene were Cu>Mn>Fe>V>Mo>Co>Ni>Zn for 15% transition metals/ALO-6 catalyst system. Increasing the calcination temperature resulted in decreasing the specific surface areas of catalyst, subsequently the catalytic activity. The loading of Cu on ALO-6 had a great effect on the catalytic activity and 5% Cu/ALO-6 catalyst showed higher catalytic activity, which may be contributed to the uniformly distributed active sites. Benzene, toluene and xylene were completely oxidized to carbon dioxide over 5% Cu/ALO-6 catalyst at over $380^{\circ}C$ and 4.5 g-cat.hr./g-mole. The orders of the kinds of reactants for catalytic activity over 5% Cu/ALO-6 were toluene>xylene>benzene. As the concentration of reactant increased, the catalytic activity decreased due to self-poison of reactant.

  • PDF

Removal of SO2 over Binary Nb/Fe Mixed Oxide Catalysts (이성분계 Nb/Fe 혼합산화물 촉매에 의한 아황산가스의 제거)

  • Chung, Jong Kook;Lee, Seok Hee;Park, Dae Won;Woo, Hee Chul
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.87-94
    • /
    • 2006
  • The reduction of $SO_2$ to elemental sulfur by CO over a series of iron niobate with nominal Nb/Fe atomic ratios of 1/0, 10/1, 5/1, 1/1, 1/5, 1/10 and 0/1 was studied with a flow fixed-bed reactor. Strong synergistic phenomena in catalytic activity and selectivity were observed for the iron niobate catalysts, and the best catalytic performance was observed for the catalyst with Fe/Nb atomic ratio of 1/1. The active phase of the activated iron niobate catalysts was identified to be $FeS_2$ using XRD and XPS. Selective reduction of $SO_2$ by CO was followed by the COS intermediate mechanism.

  • PDF

Ex-situ Catalytic Pyrolysis of Korean Native Oak Tree over Microporous Zeolites (미세기공 제올라이트를 이용한 국내 수종 굴참나무의 간접 촉매 열분해)

  • Kim, Young-Min;Kim, Beom-Sik;Chea, Kwang-Seok;Jo, Tae Su;Kim, Seungdo;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.407-414
    • /
    • 2016
  • Ex-situ catalytic pyrolysis of a Korean native oak tree over microporous zeolites (HZSM-5, HBeta, and HY) was performed by using a fixed bed reactor. The effect of sample to catalyst ratio and reaction temperature was also investigated to optimize production conditions of high quality bio-oil. Among three catalysts, HZSM-5 showed the highest aromatic formation due to its proper pore size and strong acidity. Although HY and HBeta also showed the catalytic activity, they produced larger amounts of coke due to their larger pore size. The smaller ratio of the sample to the catalyst and higher reaction temperature were also required to maximize the yields of aromatic hydrocarbons via the catalytic pyrolysis of oak tree over HZSM-5.

Physical and Chemical Characteristics of Waste Automotive Catalysts (자동차 폐촉매의 물리 화학적 특성)

  • Seo, Seong-Gyu;Moon, Joung-Sun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.819-825
    • /
    • 2000
  • The physico-chemical characteristics and the combustion activities of a waste automotive catalyst were carried out in this study. The physico-chemical characteristics of waste automotive catalyst was examined by EA(Elemental analysis), ICP-AES (Inductively coupled plasma-atomic emission spectrophotometer), and XRD(X-ray diffraction) analysis. Carbon deposit amount was higher in front brick than rear brick of catalyst, and increased with mileage. The content of Pt. Pd and Rh in waste automotive catalyst was different from the car manufacturing company. The combustion activities of waste automotive catalyst were investigated for acetaldehyde as a model VOC in a fixed bed reactor at atmospheric pressure. The catalytic activity of rear brick for acetaldehyde combustion was better than front brick of waste automotive catalyst. The catalytic activity of waste automotive catalyst for acetaldehyde combustion decreased with mileage. The linear relationship between catalytic activity and mileage was negative and has a very excellent correlation. Finally, the waste automotive catalyst has a good catalytic activity for acetaldehyde combustion. and can be used to control of small emission source.

  • PDF

Synthesis of Methanol and Formaldehyde by Partial Oxidation of Methane over Mixed Oxide Catalysts (복합산화물 촉매 상에서 메탄의 부분산화에 의한 메탄올 및 포름알데히드의 합성)

  • Hahm, Hyun-Sik;Shin, Ki-Seok;Ahn, Sung-Hwan;Kim, Song-Hyoung;Hong, Seok-Young;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.223-229
    • /
    • 2006
  • Methanol and formaldehyde were produced directly by the partial oxidation of methane over mixed oxide catalysts. The catalysts were composed of Mo and Bi with late-transition metals, such as Mn, Fe, and Co. The reaction was carried out at $450^{\circ}C$, 50 bar in a fixed-bed differential reactor. The prepared catalysts were characterized by $O_2-TPD$ and BET apparatus. Among the catalysts used, the catalyst composed of 1:1:2.5 molar ratio of Mo:Bi:Mn showed the best methane conversion and methanol selectivity. The change in ratio of methane to oxygen affected at the conversion and selectivity, and the most proper ratio was 10:1.5. Methane conversion, methanol and formaldehyde selectivities increased with the surface areas of the catalysts. From the $O_2-TPD$ result, it was found that the oxygen species responsible for this reaction might be the lattice oxygen species desorbed at high temperature around $800^{\circ}C$.

The Effect of Sn on Dehydrocyclization of n-Heptane over Pt-Sn/γ-Al2O3 Catalyst (Pt-Sn/γ-Al2O3 촉매상에서 n-Heptane의 탈수소고리화 반응에서 조촉매 주석의 영향)

  • Song, Myeong-Sug;Kim, Moon-Chan;Kim, Kyung-Lim
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.411-420
    • /
    • 1991
  • The dehydrocyclization of n-heptane was studied over $Pt-Sn/{\gamma}-Al/_2O_3$ catalysts with varying Sn content in a fixed bed continuous flow reactor. The range of experimental conditions was at the temperature between 450 and $550^{\circ}C$, the pressure $20{\times}10^5-50{\times}10^5Pa$, the contact time 0.09 and 0.27 hr and the $H_2/H.C$. mole ratio 10. The conversion and selectivity of dehydrocyclization increased with increasing temperature, but decreased with increasing pressure. When we use Sn as a promoter, the selectivity of dehydrocyclization changesa a little, but the conversion was increased and the selectivity of isomerization increased a lot. The activation energy of dehydrocyclization of n-heptane was 34.5 kcal/mol over 0.6 wt % Pt-0.6 wt % $Sn/{\gamma}-Al_2O_3$.

  • PDF