• Title/Summary/Keyword: Fitting model

검색결과 1,342건 처리시간 0.029초

Curve Fitting을 이용한 건설장비 CO2 배출량 예측 모델 (A Prediction Model of CO2 Emissions for Construction Equipment Using Curve Fitting)

  • 노재윤;김유진;이지연;이민우;한승우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.107-108
    • /
    • 2020
  • The severity of the global climate crisis is increasing due to greenhouse gases caused by human activities. As a result, countries and industries are making efforts to reduce carbon dioxide emissions, the biggest cause of global warming. Many studies have been conducted to predict carbon emissions in the construction sector to reduce this, but they have not actually produced a highly usable formula in the field. Therefore, the two variables 'Curve Fitting' were performed based on the data of excavators and trucks measured at the field. As a result, we have obtained a carbon dioxide emission prediction model for construction equipment, and we would like to use it to help establish an eco-friendly process plan.

  • PDF

모핑 기법을 활용한 40대 남성 하반신 가상모델 생성에 관한 연구 (A Study of 3D Virtual Fitting Model of Men's Lower Bodies in Forties by Morphing Technique.)

  • 박선미;남윤자;최경미
    • 한국의류학회지
    • /
    • 제31권3호
    • /
    • pp.463-474
    • /
    • 2007
  • With rapid expansion in e-retailing of apparel business, personalized fitting model service shows the possibility as the differentiated marketing strategy in cyber shopping. According as necessity of personalized fitting model construction rises, it is tried personalized fitting model creation in several fields such as computer engineering, mechanical engineering, information engineering. But, because existent study was concentrated only on human body modeling, it does not reflect average morphological characteristics of human body properly. In this study, we wish to examine if morphing is fit for expressing characteristic of average human body shape and suggest desirable morphing. We used 3-D scan data of 254 Korean middle aged men collected by Size Korea 2004. The result of this study are as follows: Lower body types were categorized by height hip girth and lower drop(hip girth-navel girth) which were main factors of lower body shape. Then each factor was divided into 3 groups respectively, 30% in the middle, over 30%, under 30%. In 27 groups, the group which belonged to 30% in the middle of height, 30% in the middle of hip girth, 30% in the middle of lower drop was selected as a representative group. We tested geometrical figure by differ volume, tilt, position of point. And we created a representative type of men's lower bodies by morphing the representative group and analyzed it's horizontal, vertical sections. A representative type which was created by morphing reflected a real body and changed realistically at the part of hip, crotch, calf muscle and so on. A cross sections of a representative type were similar to average cross sections of the representative group in size and shape. So it was proved that morphing was successful.

Mura 검출을 위한 Model Fitting 및 Least Square Estimator의 비교 (Comparison of Model Fitting & Least Square Estimator for Detecting Mura)

  • 오창환;주효남;류근호
    • 제어로봇시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.415-419
    • /
    • 2008
  • Detecting and correcting defects on LCD glasses early in the manufacturing process becomes important for panel makers to reduce the manufacturing costs and to improve productivity. Many attempts have been made and were successfully applied to detect and identify simple defects such as scratches, dents, and foreign objects on glasses. However, it is still difficult to robustly detect low-contrast defect region, called Mura or blemish area on glasses. Typically, these defect areas are roughly defined as relatively large, several millimeters of diameter, and relatively dark and/or bright region of low Signal-to-Noise Ratio (SNR) against background of low-frequency signal. The aim of this article is to present a robust algorithm to segment these blemish defects. Early 90's, a highly robust estimator, known as the Model-Fitting (MF) estimator was developed by X. Zhuang et. al. and have been successfully used in many computer vision application. Compared to the conventional Least-Square (LS) estimator the MF estimator can successfully estimate model parameters from a dataset of contaminated Gaussian mixture. Such a noise model is defined as a regular white Gaussian noise model with probability $1-\varepsilon$ plus an outlier process with probability $varepsilon$. In the sense of robust estimation, the blemish defect in images can be considered as being a group of outliers in the process of estimating image background model parameters. The algorithm developed in this paper uses a modified MF estimator to robustly estimate the background model and as a by-product to segment the blemish defects, the outliers.

Arterial Spin Labeling Magnetic Resonance Imaging in Healthy Adults: Mathematical Model Fitting to Assess Age-Related Perfusion Pattern

  • Ying Hu;Rongbo Liu;Fabao Gao
    • Korean Journal of Radiology
    • /
    • 제22권7호
    • /
    • pp.1194-1202
    • /
    • 2021
  • Objective: To investigate the age-dependent changes in regional cerebral blood flow (CBF) in healthy adults by fitting mathematical models to imaging data. Materials and Methods: In this prospective study, 90 healthy adults underwent pseudo-continuous arterial spin labeling imaging of the brain. Regional CBF values were extracted from the arterial spin labeling images of each subject. Multivariable regression with the Akaike information criterion, link test, and F test (Ramsey's regression equation specification error test) was performed for 7 models in every brain region to determine the best mathematical model for fitting the relationship between CBF and age. Results: Of all 87 brain regions, 68 brain regions were best fitted by cubic models, 9 brain regions were best fitted by quadratic models, and 10 brain regions were best fitted by linear models. In most brain regions (global gray matter and the other 65 brain regions), CBF decreased nonlinearly with aging, and the rate of CBF reduction decreased with aging, gradually approaching 0 after approximately 60. CBF in some regions of the frontal, parietal, and occipital lobes increased nonlinearly with aging before age 30, approximately, and decreased nonlinearly with aging for the rest of life. Conclusion: In adults, the age-related perfusion patterns in most brain regions were best fitted by the cubic models, and age-dependent CBF changes were nonlinear.

Hints for possible low redshift oscillation around the best-fitting ΛCDM model in the expansion history of the Universe

  • L Kazantzidis;H Koo;S Nesseris;L Perivolaropoulos;A Shafieloo
    • Monthly Notices of the Royal Astronomical Society
    • /
    • 제501권3호
    • /
    • pp.3421-3426
    • /
    • 2021
  • We search for possible deviations from the expectations of the concordance ΛCDM model in the expansion history of the Universe by analysing the Pantheon Type Ia Supernovae (SnIa) compilation along with its Monte Carlo simulations using redshift binning. We demonstrate that the redshift binned best-fitting ΛCDM matter density parameter Ω0m and the best-fitting effective absolute magnitude 𝓜 oscillate about their full data set best-fitting values with considerably large amplitudes. Using the full covariance matrix of the data taking into account systematic and statistical errors, we show that at the redshifts below z ≈ 0.5 such oscillations can only occur in 4 to 5 per cent of the Monte Carlo simulations. While statistical fluctuations can be responsible for this apparent oscillation, we might have observed a hint for some behaviour beyond the expectations of the concordance model or a possible additional systematic in the data. If this apparent oscillation is not due to statistical or systematic effects, it could be due to either the presence of coherent inhomogeneities at low z or due to oscillations of a quintessence scalar field.

A fast approximate fitting for mixture of multivariate skew t-distribution via EM algorithm

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • 제27권2호
    • /
    • pp.255-268
    • /
    • 2020
  • A mixture of multivariate canonical fundamental skew t-distribution (CFUST) has been of interest in various fields. In particular, interest in the unsupervised learning society is noteworthy. However, fitting the model via EM algorithm suffers from significant processing time. The main cause is due to the calculation of many multivariate t-cdfs (cumulative distribution functions) in E-step. In this article, we provide an approximate, but fast calculation method for the in univariate fashion, which is the product of successively conditional univariate t-cdfs with Taylor's first order approximation. By replacing all multivariate t-cdfs in E-step with the proposed approximate versions, we obtain the admissible results of fitting the model, where it gives 85% reduction time for the 5 dimensional skewness case of the Australian Institution Sport data set. For this approach, discussions about rough properties, advantages and limits are also presented.

CMA-ES를 활용한 수정질점탄도모델의 탄도수정계수 설정기법 (Fitting Coefficient Setting Method for the Modified Point Mass Trajectory Model Using CMA-ES)

  • 안세일;이교복;강태형
    • 한국군사과학기술학회지
    • /
    • 제19권1호
    • /
    • pp.95-104
    • /
    • 2016
  • To make a firing table of artillery with trajectory simulation, a precise trajectory model which corresponds with real firing test is required. Recent 4-DOF modified point mass trajectory model is considered accurate as a theoretical model, but fitting coefficients are used in calculation to match with real firing test results. In this paper, modified point mass trajectory model is presented and method of setting ballistic coefficient is introduced by applying optimization algorithms. After comparing two different algorithms, Particle Swarm Optimization and Covariance Matrix Adaptation - Evolutionary Strategy, we found that using CMA-ES algorithm gives fine optimization result. This fitting coefficient setting method can be used to make trajectory simulation which is required for development of new projectiles in the future.

LM 최적화 알고리즘을 이용한 유리함수 모델의 데이터 피팅 (A Data Fitting Technique for Rational Function Models Using the LM Optimization Algorithm)

  • 박재한;배지훈;백문홍
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.768-776
    • /
    • 2011
  • This paper considers a data fitting problem for rational function models using the LM (Levenberg-Marquardt) optimization method. Rational function models have various merits on representing a wide range of shapes and modeling complicated structures by polynomials of low degrees in both the numerator and denominator. However, rational functions are nonlinear in the parameter vector, thereby requiring nonlinear optimization methods to solve the fitting problem. In this paper, we propose a data fitting method for rational function models based on the LM algorithm which is renowned as an effective nonlinear optimization technique. Simulations show that the fitting results are robust against the measurement noises and uncertainties. The effectiveness of the proposed method is further demonstrated by the real application to a 3D depth camera calibration problem.

Music/Voice Separation Based on Kernel Back-Fitting Using Weighted β-Order MMSE Estimation

  • Kim, Hyoung-Gook;Kim, Jin Young
    • ETRI Journal
    • /
    • 제38권3호
    • /
    • pp.510-517
    • /
    • 2016
  • Recent developments in the field of separation of mixed signals into music/voice components have attracted the attention of many researchers. Recently, iterative kernel back-fitting, also known as kernel additive modeling, was proposed to achieve good results for music/voice separation. To obtain minimum mean square error (MMSE) estimates of short-time Fourier transforms of sources, generalized spatial Wiener filtering (GW) is typically used. In this paper, we propose an advanced music/voice separation method that utilizes a generalized weighted ${\beta}$-order MMSE estimation (WbE) based on iterative kernel back-fitting (KBF). In the proposed method, WbE is used for the step of mixed music signal separation, while KBF permits kernel spectrogram model fitting at each iteration. Experimental results show that the proposed method achieves better separation performance than GW and existing Bayesian estimators.

조명얼굴 영상을 위한 협력적 지역 능동표현 모델 (Collaborative Local Active Appearance Models for Illuminated Face Images)

  • 양준영;고재필;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권10호
    • /
    • pp.816-824
    • /
    • 2009
  • 얼굴영상 공간에서 얼굴영상들은 조명이나 포즈에 의해 비선형적 분포를 갖는다. 이들을 선형모델에 기반을 둔 AAM으로 모델링 하는 것은 한계가 있다. 본 논문에서는 얼굴영상에 대한 몇 개의 군집이 주어졌다고 가정하고, 각 군집 별로 지역적인 AAM 모델을 구축하여 정합과정 중에 적합한 모델이 선택되도록 한다. 정합과정에서 발생하는 모델변경에 따른 모델간의 정합 인자 갱신의 문제는 인자 공간에서 모델간의 선형 관계를 미리 학습하여 해결한다. 심각한 정합 실패에 따른 잘못된 모델 선택을 줄이기 위해 점진적으로 모델변경이 이루어지도록 한다. 실험에서는 제안하는 방법을 Yale-B 조명얼굴 영상에 적용하여 모델을 생성하고 기존 방법과 정합 성능을 비교한다. 제안 방법은 심각한 그림자가 발생하는 강도 높은 조명얼굴 영상에서 성공적인 정합 결과를 보여주었다.