• Title/Summary/Keyword: Fitting algorithm

Search Result 475, Processing Time 0.02 seconds

Real-time Hand Region Detection based on Cascade using Depth Information (깊이정보를 이용한 케스케이드 방식의 실시간 손 영역 검출)

  • Joo, Sung Il;Weon, Sun Hee;Choi, Hyung Il
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.10
    • /
    • pp.713-722
    • /
    • 2013
  • This paper proposes a method of using depth information to detect the hand region in real-time based on the cascade method. In order to ensure stable and speedy detection of the hand region even under conditions of lighting changes in the test environment, this study uses only features based on depth information, and proposes a method of detecting the hand region by means of a classifier that uses boosting and cascading methods. First, in order to extract features using only depth information, we calculate the difference between the depth value at the center of the input image and the average of depth value within the segmented block, and to ensure that hand regions of all sizes will be detected, we use the central depth value and the second order linear model to predict the size of the hand region. The cascade method is applied to implement training and recognition by extracting features from the hand region. The classifier proposed in this paper maintains accuracy and enhances speed by composing each stage into a single weak classifier and obtaining the threshold value that satisfies the detection rate while exhibiting the lowest error rate to perform over-fitting training. The trained classifier is used to classify the hand region, and detects the final hand region in the final merger stage. Lastly, to verify performance, we perform quantitative and qualitative comparative analyses with various conventional AdaBoost algorithms to confirm the efficiency of the hand region detection algorithm proposed in this paper.

Dynamic Nonlinear Prediction Model of Univariate Hydrologic Time Series Using the Support Vector Machine and State-Space Model (Support Vector Machine과 상태공간모형을 이용한 단변량 수문 시계열의 동역학적 비선형 예측모형)

  • Kwon, Hyun-Han;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.279-289
    • /
    • 2006
  • The reconstruction of low dimension nonlinear behavior from the hydrologic time series has been an active area of research in the last decade. In this study, we present the applications of a powerful state space reconstruction methodology using the method of Support Vector Machines (SVM) to the Great Salt Lake (GSL) volume. SVMs are machine learning systems that use a hypothesis space of linear functions in a Kernel induced higher dimensional feature space. SVMs are optimized by minimizing a bound on a generalized error (risk) measure, rather than just the mean square error over a training set. The utility of this SVM regression approach is demonstrated through applications to the short term forecasts of the biweekly GSL volume. The SVM based reconstruction is used to develop time series forecasts for multiple lead times ranging from the period of two weeks to several months. The reliability of the algorithm in learning and forecasting the dynamics is tested using split sample sensitivity analyses, with a particular interest in forecasting extreme states. Unlike previously reported methodologies, SVMs are able to extract the dynamics using only a few past observed data points (Support Vectors, SV) out of the training examples. Considering statistical measures, the prediction model based on SVM demonstrated encouraging and promising results in a short-term prediction. Thus, the SVM method presented in this study suggests a competitive methodology for the forecast of hydrologic time series.

Three-dimensional thermal-hydraulics/neutronics coupling analysis on the full-scale module of helium-cooled tritium-breeding blanket

  • Qiang Lian;Simiao Tang;Longxiang Zhu;Luteng Zhang;Wan Sun;Shanshan Bu;Liangming Pan;Wenxi Tian;Suizheng Qiu;G.H. Su;Xinghua Wu;Xiaoyu Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4274-4281
    • /
    • 2023
  • Blanket is of vital importance for engineering application of the fusion reactor. Nuclear heat deposition in materials is the main heat source in blanket structure. In this paper, the three-dimensional method for thermal-hydraulics/neutronics coupling analysis is developed and applied for the full-scale module of the helium-cooled ceramic breeder tritium breeding blanket (HCCB TBB) designed for China Fusion Engineering Test Reactor (CFETR). The explicit coupling scheme is used to support data transfer for coupling analysis based on cell-to-cell mapping method. The coupling algorithm is realized by the user-defined function compiled in Fluent. The three-dimensional model is established, and then the coupling analysis is performed using the paralleled Coupling Analysis of Thermal-hydraulics and Neutronics Interface Code (CATNIC). The results reveal the relatively small influence of the coupling analysis compared to the traditional method using the radial fitting function of internal heat source. However, the coupling analysis method is quite important considering the nonuniform distribution of the neutron wall loading (NWL) along the poloidal direction. Finally, the structure optimization of the blanket is carried out using the coupling method to satisfy the thermal requirement of all materials. The nonlinear effect between thermal-hydraulics and neutronics is found during the blanket structure optimization, and the tritium production performance is slightly reduced after optimization. Such an adverse effect should be thoroughly evaluated in the future work.

$^{17}O$ NMR Study On Water Excharge Rate of Paramagnetic Contrast Agents ($^{17}O$ NMR 기법을 이용한 상자성 자기공명조영제의 물분자 교환에 관한 연구)

  • Yongmin Chang;Sung Wook Hong;Moon Jung Hwang;Il Soo Rhee;Duk-Sik Kang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 2001
  • Purpose : The water exchange rate between bulk water and bound water is an important parameter in deciding the efficiency of paramagnetic contrast agents. In this study, we evaluated the water exchange rates of various Gd-chelates using oxygen-17 NMR technique. Material and Methods : The samples (Gd-DTPA, Gd-DTPA-BMA, Gd-DOTA, Gd-EOB-DTPA) were prepared by mixing 5% $^{17}O-enriched$ water (Isotech, USA). The pH of the samples was adjusted to physiological value [pH=7.0] by buffer solution. The variable temperature $^{17}O-NMR$ measurements were performed using Bruker-600 (14.1 T, 81.3 MHz) spectrometer. Bruker VT-1000 temperature control units were used to stabilize the temperature. The $^{17}O$ spin-spin relaxation times (T2) were measured using Carr-Purcell-Meiboom-Gill (CPMG)I pulse sequence with 24 echo trains. The variable temperature T2 relaxation data were then fitted into Solomon-Bloembergen equations using least square fit algorithm to estimate the water exchange times. Results : From the measured $^{17}O-NMR$ relaxation rates, the determined water exchange rates at 300K are $0.42{\;}{\mu}s$ for Gd-DTPA, $1.99{\;}{\mu}s$ for Gd-DTPA-BMA, $0.27{\;}{\mu}s$ for Gd-DOTA, and $0.11{\;}{\mu}s$ for Gd-EOB-DTPA. The Gd-DTPA-BMA showed slowest exchange whereas Gd-EOB-DTPA had fastest water exchange rate. In addition, it was found that the water exchange rates (${\tau}_m$) of all samples had exponential temperature dependence with different decay constant. Conclusion : $^{17}O-NMR$ relaxation rate measurements, when combined with variable temperature technique, provide a solid tool for studying water exchange rate, which is very important in investigating the detailed mechanism of relaxation enhancement effect of the paramagnetic contrast agents.

  • PDF

Development of Gated Myocardial SPECT Analysis Software and Evaluation of Left Ventricular Contraction Function (게이트 심근 SPECT 분석 소프트웨어의 개발과 좌심실 수축 기능 평가)

  • Lee, Byeong-Il;Lee, Dong-Soo;Lee, Jae-Sung;Chung, June-Key;Lee, Myung-Chul;Choi, Heung-Kook
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.2
    • /
    • pp.73-82
    • /
    • 2003
  • Objectives: A new software (Cardiac SPECT Analyzer: CSA) was developed for quantification of volumes and election fraction on gated myocardial SPECT. Volumes and ejection fraction by CSA were validated by comparing with those quantified by Quantitative Gated SPECT (QGS) software. Materials and Methods: Gated myocardial SPECT was peformed in 40 patients with ejection fraction from 15% to 85%. In 26 patients, gated myocardial SPECT was acquired again with the patients in situ. A cylinder model was used to eliminate noise semi-automatically and profile data was extracted using Gaussian fitting after smoothing. The boundary points of endo- and epicardium were found using an iterative learning algorithm. Enddiastolic (EDV) and endsystolic volumes (ESV) and election fraction (EF) were calculated. These values were compared with those calculated by QGS and the same gated SPECT data was repeatedly quantified by CSA and variation of the values on sequential measurements of the same patients on the repeated acquisition. Results: From the 40 patient data, EF, EDV and ESV by CSA were correlated with those by QGS with the correlation coefficients of 0.97, 0.92, 0.96. Two standard deviation (SD) of EF on Bland Altman plot was 10.1%. Repeated measurements of EF, EDV, and ESV by CSA were correlated with each other with the coefficients of 0.96, 0.99, and 0.99 for EF, EDV and ESV respectively. On repeated acquisition, reproducibility was also excellent with correlation coefficients of 0.89, 0.97, 0.98, and coefficient of variation of 8.2%, 5.4mL, 8.5mL and 2SD of 10.6%, 21.2mL, and 16.4mL on Bland Altman plot for EF, EDV and ESV. Conclusion: We developed the software of CSA for quantification of volumes and ejection fraction on gated myocardial SPECT. Volumes and ejection fraction quantified using this software was found valid for its correctness and precision.