• Title/Summary/Keyword: Fission matrix

Search Result 38, Processing Time 0.023 seconds

IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

  • Meyer, M.K.;Gan, J.;Jue, J.F.;Keiser, D.D.;Perez, E.;Robinson, A.;Wachs, D.M.;Woolstenhulme, N.;Hofman, G.L.;Kim, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.169-182
    • /
    • 2014
  • High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

Two-Dimensional Reference Map of Schizosaccharomyces pombe Proteins (Update)

  • Kim, Sun-Kyung;Won, Mi-Sun;Sun, Nam-Kyu;Jang, Jae-Won;Lee, Seung-Hee;Shin, Hee-Young;Song, Kyung-Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1499-1512
    • /
    • 2006
  • Based on the first 2D reference map of the fission yeast Schizosaccharomyces pombe protein reported previously, we expanded and updated the map using narrower pI ranges. In this paper, 240 protein spots were identified on our reference map. In the pI 4-7 range, 144 spots corresponding to 86 different proteins were identified. In the pI 6-9 range, 43 spots corresponding to 35 different proteins were identified. Fifty-three new spots corresponding to 39 different proteins were further identified in the pI 5-6 range.

Geometry Optimization of Dispersed U-Mo Fuel for Light Water Reactors

  • Ondrej Novak;Pavel Suk;Dusan Kobylka;Martin Sevecek
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3464-3471
    • /
    • 2023
  • The Uranium/Molybdenum metallic fuel has been proposed as promising advanced fuel concept especially in the dispersed fuel geometry. The fuel is manufactured in the form of small fuel droplets (particles) placed in a fuel pin covered by a matrix. In addition to fuel particles, the pin contains voids necessary to compensate material swelling and release of fission gases from the fuel particles. When investigating this advanced fuel design, two important questions were raised. Can the dispersed fuel performance be analyzed using homogenization without significant inaccuracy and what size of fuel drops should be used for the fuel design to achieve optimal utilization? To answer, 2D burnup calculations of fuel assemblies with different fuel particle sizes were performed. The analysis was supported by an additional 3D fuel pin calculation with the dispersed fuel particle size variations. The results show a significant difference in the multiplication factor between the homogenized calculation and the detailed calculation with precise fuel particle geometry. The recommended fuel particle size depends on the final burnup to be achieved. As shown in the results, for lower burnup levels, larger fuel drops offer better multiplication factor. However, when higher burnup levels are required, then smaller fuel drops perform better.

A Study on the Separation of Neodymium from the Simulated Solution of $U_3Si/Al$ Spent Nuclear Fuel (모의 사용후분산핵연료($U_3Si/Al$) 용해용액으로부터 네오디뮴 분리에 관한 연구)

  • Choi, Kwang Soon;Kim, Jung Suk;Han, Sun Ho;Park, Soon Dal;Park, Yeong Jae;Joe, Kih Soo;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.584-591
    • /
    • 2000
  • The separation of Nd from the simulated $U_3Si/Al$ spent fuel solution with sequential two-step anion exchange separation has been studied. To prepare the simulated $U_3Si/Al$ spent nuclear fuel, unirradiated $U_3Si/Al$ whose composition consists of small $U_3Si$ particle dispersed in an Al matrix with Al cladding was dissolved with a mixture of 4 M HCl and 10 M $HNO_3$ and 8 or 15 fission product elements were added to the dissolved solution. The trace amount of silica in the solutions was removed by evaporating to dryness with HF and the U was adsorbed on the first anion exchange resin. Neodymium can be purely isolated from the fission product elements with a methanol-nitric acid eluent using the second anion exchange resin. A large excess of Al didn't influence on the elution velocity of Nd, but reduced the eluted contents of Nd, Al, Eu, Gd, Sm and Sr, A large amount of Al was removed first from the column with 3 mL of loading solution (0.8 M $HNO_3$/99.8% MeOH) before Nd elution by the eluent [0.04 M $HNO_3$-99.8% MeOH(1:9)]. The recovery of Nd was more than 94%, regardless of Al contents. Taking the 9 to 13 mL fraction of eluate was effective to purely isolate Nd.

  • PDF

Determination of La in $U_3Si/Al$ Spent Nuclear Fuel by Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry (Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry에 의한 $U_3Si/Al$ 사용후핵연료 중 La의 분리 및 정량)

  • Han, Sun Ho;Choi, Kwang Soon;Kim, Jung Suk;Jeon, Young Shin;Park, Yang Soon;Jee, Kwang Yong;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.601-607
    • /
    • 2000
  • Lanthanum has been used as one of the burnup monitor in spent nuclear fuel. $U_3Si/Al$ spent nuclear fuel contains small amount of La in high concentration of U and Al. Therefore, chemical separation of La is required to remove matrix elements. At first, ion chromatography (IC) and inductively coupled plasma systems were installed in radiation shielded glove box to handle the radioactive samples. Retention behavior of uranium, aluminum, lanthanum and some interesting fission products (Sr, Zr, Y, Mo, Ru, Pd, Rh, Cs, Ba, Ce, Pr, Nd, Sm, Eu and Cd) was investigated using the CG10 column and ${\alpha}$-HiBA eluent. As all elements were eluted earlier than lanthanum in 0.2 M ${\alpha}$-HiBA eluent, a portion of U and Al was directly passed to waste using a three way valve between the column and the nebulizer. Thus it was possible to determine the lanthanum in a high concentration of U and Al matrix. Retention time of La was about 12 minutes in this separation condition. Optimum range for the determination of La in $U_3Si/Al$ spent nuclear fuel was $1-10{\mu}g/L$ (ppb) with this system and detection limit was $0.25{\mu}g/L$ in case of $200{\mu}L$ of sample volume.

  • PDF

Application of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Characterization of U-7Mo/Al-5Si Dispersion Fuels

  • Lee, Jeongmook;Park, Jai Il;Youn, Young-Sang;Ha, Yeong-Keong;Kim, Jong-Yun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.645-650
    • /
    • 2017
  • This technical note demonstrates the feasibility of using laser ablation inductively coupled plasma mass spectrometry for the characterization of U-7Mo/Ale5Si dispersion fuel. Our measurements show 5.0% Relative Standard Deviation (RSD) for the reproducibility of measured $^{98}Mo/^{238}U$ ratios in fuel particles from spot analysis, and 3.4% RSD for $^{98}Mo/^{238}U$ ratios in a NIST-SRM 612 glass standard. Line scanning allows for the distinction of U-7Mo fuel particles from the Al-5Si matrix. Each mass spectrum peak indicates the presence of U-7Mo fuel particles, and the time width of each peak corresponds to the size of that fuel particle. The size of the fuel particles is estimated from the time width of the mass spectrum peak for $^{98}Mo$ by considering the scan rate used during the line scan. This preliminary application clearly demonstrates that laser ablation inductively coupled plasma mass spectrometry can directly identify isotope ratios and sizes of the fuel particles in U-Mo/Al dispersion fuel. Once optimized further, this instrument will be a powerful tool for investigating irradiated dispersion fuels in terms of fission product distributions in fuel matrices, and the changes in fuel particle size or shape after irradiation.

The Corrosion Properties of Zr-Cr-NM Alloy Metallic Waste Form for Long-term Disposal (Zr-Cr-NM 금속폐기물고화체 합금의 장기처분을 위한 부식특성)

  • Han, Seungyoub;Jang, Seon Ah;Eun, Hee-Chul;Choi, Jung-Hoon;Lee, Ki Rak;Park, Hwan Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.125-133
    • /
    • 2017
  • KAERI is conducting research on spent cladding hulls and additive metals to generate a solidification host matrix for the noble metal fission product waste in anode sludge from the electro-refining process to minimize the volume of waste that needs to be disposed of. In this study, alloy compositions Zr-17Cr, Zr-22Cr, and Zr-27Cr were prepared with or without eight noble metals representing fuel waste using induction melting. The microstructures of the resulting alloys were characterized and electrochemical corrosion tests were conducted to evaluate their corrosion characteristics. All the compositions had better corrosion characteristics than other Zr-based alloys that were evaluated for comparison. Analysis of the leach solution after the corrosion test of the Zr-22Cr-8NM specimen indicated that the noble metals were not leached during corrosion under 500 mV imposed voltage, which simulates a highly oxidizing disposal environment. The results of this study confirm that Zr-Cr based compositions will likely serve as chemically stable waste forms.

Gene Expression Profiling by Ginsenoside Rb1 in Keratinocyte HaCaT Cells (피부각질세포 HaCaT에서 진세노사이드 Rb1에 의한 유전자 발현 양상)

  • Lee, Dong Woo;Kim, Jung Min;Bang, In Seok
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.514-523
    • /
    • 2019
  • We investigated the gene expression patterns and the mechanisms of action of the apoptotic response by microarray analysis of human keratinocyte HaCaT cells treated with ginsenoside Rb1, a saponin of Panax ginseng C. A. Meyer. Genes related to apoptosis, the G2/M transition of the mitotic cell cycle, cell division, mitotic nuclear division, and intracellular protein transport were 2-fold up-regulated in HaCaT cells treated with the ginsenoside Rb1, whereas genes related to DNA repair, regeneration fission, and extracellular matrix organization were 2-fold down-regulated. Apoptosis signaling may be mediated by FAS and PLA2G4A, and pathway analysis indicated that STAT3 might be an upstream regulator of these genes. The activity of FAS and PLA2G4A was verified by qPCR, which showed that FAS was increased about 2-fold in HaCaT cells treated with $10{\mu}g/ml$ of ginsenoside Rb1 for 24 hr, PLA2G4A was increased about twice after 6 hours, and gene expression was increased more than 2-fold after 24 hr. Knockdown of STAT3 with siRNA decreased FAS expression and increased PLA2G4A expression but only FAS was passed from the upstream regulator STAT3. These results indicate that STAT3, which is an upstream regulator, induces apoptosis via FAS during treatment with ginsenoside Rb1.