• 제목/요약/키워드: Fission gas release

검색결과 63건 처리시간 0.026초

Assessment of INSPYRE-extended fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment

  • L. Luzzi;T. Barani;B. Boer;A. Del Nevo;M. Lainet;S. Lemehov;A. Magni;V. Marelle;B. Michel;D. Pizzocri;A. Schubert;P. Van Uffelen;M. Bertolus
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.884-894
    • /
    • 2023
  • Design and safety assessment of fuel pins for application in innovative Generation IV fast reactors calls for a dedicated nuclear fuel modelling and for the extension of the fuel performance code capabilities to the envisaged materials and irradiation conditions. In the INSPYRE Project, comprehensive and physics-based models for the thermal-mechanical properties of U-Pu mixed-oxide (MOX) fuels and for fission gas behaviour were developed and implemented in the European fuel performance codes GERMINAL, MACROS and TRANSURANUS. As a follow-up to the assessment of the reference code versions ("pre-INSPYRE", NET 53 (2021) 3367-3378), this work presents the integral validation and benchmark of the code versions extended in INSPYRE ("post-INSPYRE") against two pins from the SUPERFACT-1 fast reactor irradiation experiment. The post-INSPYRE simulation results are compared to the available integral and local data from post-irradiation examinations, and benchmarked on the evolution during irradiation of quantities of engineering interest (e.g., fuel central temperature, fission gas release). The comparison with the pre-INSPYRE results is reported to evaluate the impact of the novel models on the predicted pin performance. The outcome represents a step forward towards the description of fuel behaviour in fast reactor irradiation conditions, and allows the identification of the main remaining gaps.

Development of a Simplified Statistical Methodology for Nuclear Fuel Rod Internal Pressure Calculation

  • Kim, Kyu-Tae;Kim, Oh-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.257-266
    • /
    • 1999
  • A simplified statistical methodology is developed in order to both reduce over-conservatism of deterministic methodologies employed for PWR fuel rod internal pressure (RIP) calculation and simplify the complicated calculation procedure of the widely used statistical methodology which employs the response surface method and Monte Carlo simulation. The simplified statistical methodology employs the system moment method with a deterministic approach in determining the maximum variance of RIP The maximum RIP variance is determined with the square sum of each maximum value of a mean RIP value times a RIP sensitivity factor for all input variables considered. This approach makes this simplified statistical methodology much more efficient in the routine reload core design analysis since it eliminates the numerous calculations required for the power history-dependent RIP variance determination. This simplified statistical methodology is shown to be more conservative in generating RIP distribution than the widely used statistical methodology. Comparison of the significances of each input variable to RIP indicates that fission gas release model is the most significant input variable.

  • PDF

모의 DUPIC 핵연료의 소결 특성 연구 (A Study on the Sintering of Simulated DUPIC Fuel)

  • 강권호;배기광;박희성;송기찬;문제선
    • 한국분말재료학회지
    • /
    • 제7권3호
    • /
    • pp.123-130
    • /
    • 2000
  • The simulated DUPIC fuel provides a convenient way to investigate fuel properties and behaviours such as thermal conductivity, thermal expansion, fission gas release, leaching and so on. Several pellets simulating the composition and microstructure of the DUPIC fuel were fabricated from resintering powder through the OREOX process of the simulated spent fuel pellets, which were prepared from the mixture of stable forms of constituent nuclides. This study describes the powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using the simulated spent fuel. The homogeneity of additives in the powder was observed after attrition milling. The microstructure of the simulated spent fuel was in agreement with the previous studies. The densities and the grain size of simulated DUPIC fuel was pellets are higher than those of simulated spent fuel pellets. Small metallic precipitates and oxide precipitates were observed on matrix grain boundaries.

  • PDF

RECENT UPDATES TO NRC FUEL PERFORMANCE CODES AND PLANS FOR FUTURE IMPROVEMENTS

  • Geelhood, Kenneth
    • Nuclear Engineering and Technology
    • /
    • 제43권6호
    • /
    • pp.509-522
    • /
    • 2011
  • FRAPCON-3.4a and FRAPTRAN 1.4 are the most recent versions of the U.S. Nuclear Regulatory Commission (NRC) steady-state and transient fuel performance codes, respectively. These codes have been assessed against separate effects data and integral assessment data and have been determined to provide a best estimate calculation of fuel performance. Recent updates included in FRAPCON-3.4a include updated material properties models, models for new fuel and cladding types, cladding finite element analysis capability, and capability to perform uncertainty analyses and calculate upper tolerance limits for important outputs. Recent updates included in FRAPTRAN 1.4 include: material properties models that are consistent with FRAPCON-3.4a, cladding failure models that are applicable for loss-of coolant-accident and reactivity initiated accident modeling, and updated heat transfer models. This paper briefly describes these code updates and data assessments, highlighting the particularly important improvements and data assessments. This paper also discusses areas of improvements that will be addressed in upcoming code versions.

A Simple Parameterization for the Rising Velocity of Bubbles in a Liquid Pool

  • Park, Sung Hoon;Park, Changhwan;Lee, JinYong;Lee, Byungchul
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.692-699
    • /
    • 2017
  • The determination of the shape and rising velocity of gas bubbles in a liquid pool is of great importance in analyzing the radioactive aerosol emissions from nuclear power plant accidents in terms of the fission product release rate and the pool scrubbing efficiency of radioactive aerosols. This article suggests a simple parameterization for the gas bubble rising velocity as a function of the volume-equivalent bubble diameter; this parameterization does not require prior knowledge of bubble shape. This is more convenient than previously suggested parameterizations because it is given as a single explicit formula. It is also shown that a bubble shape diagram, which is very similar to the Grace's diagram, can be easily generated using the parameterization suggested in this article. Furthermore, the boundaries among the three bubble shape regimes in the $E_o-R_e$ plane and the condition for the bypass of the spheroidal regime can be delineated directly from the parameterization formula. Therefore, the parameterization suggested in this article appears to be useful not only in easily determining the bubble rising velocity (e.g., in postulated severe accident analysis codes) but also in understanding the trend of bubble shape change due to bubble growth.

Development and validation of FRAT code for coated particle fuel failure analysis

  • Jian Li;Ding She;Lei Shi;Jun Sun
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4049-4061
    • /
    • 2022
  • TRISO-coated particle fuel is widely used in high temperature gas cooled reactors and other advanced reactors. The performance of coated fuel particle is one of the fundamental bases of reactor safety. The failure probability of coated fuel particle should be evaluated and determined through suitable fuel performance models and methods during normal and accident condition. In order to better facilitate the design of coated particle fuel, a new TRISO fuel performance code named FRAT (Fission product Release Analysis Tool) was developed. FRAT is designed to calculate internal gas pressure, mechanical stress and failure probability of a coated fuel particle. In this paper, FRAT was introduced and benchmarked against IAEA CRP-6 benchmark cases for coated particle failure analysis. FRAT's results agree well with benchmark values, showing the correctness and satisfactory applicability. This work helps to provide a foundation for the credible application of FRAT.

고연소도 사용후 핵연료의 가열산화와 고온가열을 통한 미세조직 변화고찰 (Study of morphology on the Oxidation and the Annealing of High Burn-hp $UO_2$ Spent Fuel)

  • 김대호;방제건;양용식;송근우;이형권;권형문
    • 방사성폐기물학회지
    • /
    • 제3권4호
    • /
    • pp.301-307
    • /
    • 2005
  • 조사후 핵연료 가열(PIA장비)를 이용한 고연소도 UO2 사용후 핵연료의 산화 및 가열후 미세조직의 변화를 관찰하였다. 울진 2호기에서 한국원자력연구소 조사후시험시설로 이송된 국산 경수로용 고연소도 사용후 핵연료는 봉평균 연소도가 57,000 MWd/tU-rod avg.이였다. 본 시험에 사용된 시편은 국부연소도 65,000 MWd/tU UO2 소결체의 고형체 200 mg을 사용하였다. 본 시편을 사용후 핵 연료 가열(PIA) 시험장비를 이용하여 핫셀 내에서 3시간의 산화시험과 연속적으로 $1,400^{\circ}C$ 까지 가열하였다. 결정립경계까지의 산화를 위하여 $500^{\circ}C$에서 헬륨 50 ml, 표준공기 100 ml를 흔합한 산화분위기로 3시간을 유지하였다. 핵분열기체 방출거동을 알기위해 시험 전과정중에 85Kr의 방출량을 베타 측정기와 감마 측정기를 이용하여 실시간으로 측정 하였다. 가열시험이 종료된 후 전자주사현미경을 이용하여 미세구조의 변화를 관찰하였다. 시험결과 가열하는 동안 핵분열생성물은 UO2기지의 결정립경계와 표면으로 이동된 것을 관찰하였다. 이 시편은 환원과정을 통하여 재구조화 되었고, $5\~10\;{\mu}m$ 정도의 결정립크기를 가진 것으로 나타났다.

  • PDF

COMPARISON OF DIFFUSION COEFFICIENTS AND ACTIVATION ENERGIES FOR AG DIFFUSION IN SILICON CARBIDE

  • KIM, BONG GOO;YEO, SUNGHWAN;LEE, YOUNG WOO;CHO, MOON SUNG
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.608-616
    • /
    • 2015
  • The migration of silver (Ag) in silicon carbide (SiC) and $^{110m}Ag$ through SiC of irradiated tristructural isotropic (TRISO) fuel has been studied for the past three to four decades. However, there is no satisfactory explanation for the transport mechanism of Ag in SiC. In this work, the diffusion coefficients of Ag measured and/or estimated in previous studies were reviewed, and then pre-exponential factors and activation energies from the previous experiments were evaluated using Arrhenius equation. The activation energy is $247.4kJ{\cdot}mol^{-1}$ from Ag paste experiments between two SiC layers produced using fluidized-bed chemical vapor deposition (FBCVD), $125.3kJ{\cdot}mol^{-1}$ from integral release experiments (annealing of irradiated TRISO fuel), $121.8kJ{\cdot}mol^{-1}$ from fractional Ag release during irradiation of TRISO fuel in high flux reactor (HFR), and $274.8kJ{\cdot}mol^{-1}$ from Ag ion implantation experiments, respectively. The activation energy from ion implantation experiments is greater than that from Ag paste, fractional release and integral release, and the activation energy from Ag paste experiments is approximately two times greater than that from integral release experiments and fractional Ag release during the irradiation of TRISO fuel in HFR. The pre-exponential factors are also very different depending on the experimental methods and estimation. From a comparison of the pre-exponential factors and activation energies, it can be analogized that the diffusion mechanism of Ag using ion implantation experiment is different from other experiments, such as a Ag paste experiment, integral release experiments, and heating experiments after irradiating TRISO fuel in HFR. However, the results of this work do not support the long held assumption that Ag release from FBCVD-SiC, used for the coating layer in TRISO fuel, is dominated by grain boundary diffusion. In order to understand in detail the transport mechanism of Ag through the coating layer, FBCVD-SiC in TRISO fuel, a microstructural change caused by neutron irradiation during operation has to be fully considered.

Systems Engineering Approach to the Heat Transfer Analysis of PLUS 7 Fuel Rod Using ANSYS FEM Code

  • Park, Sang-Jun;Mutembei, Mutegi Peter;Namgung, Ihn
    • 시스템엔지니어링학술지
    • /
    • 제13권1호
    • /
    • pp.33-39
    • /
    • 2017
  • This paper describes the system engineering approach for the heat transfer analysis of plus7 fuel rod for APR1400 using, a commercial software, ANSYS. The fuel rod is composed of fuel pellets, fill gas, end caps, plenum spring and cladding. The heat is transferred from the pellet outward by conduction through the pellet, fill gas and cladding and further by convection from the cladding surface to the coolant in the flow channel. The goal of this paper is to demonstrate the temperature and heat flux change from the fuel centerline to the cladding surface when having maximum fuel centerline temperature at 100% power. This phenomenon is modelled using the ANSYS FEM code and analyzed for steady state temperature distribution across the fuel pellet and clad and the results were compared to the standard values given in APR1400 SSAR. Specifically the applicability of commercial software in the evaluation of nuclear fuel temperature distribution has been accounted. It is note that special codes have been used for fuel rod mechanical analysis which calculates interrelated effects of temperature, pressure, cladding elastic and plastic behavior, fission gas release, and fuel densification and swelling under the time-varying irradiation conditions. To satisfactorily meet this objective we apply system engineering methodologies to formulate the process and allow for verification and validation of the results acquired. The close proximity of the results obtained validated the accuracy of the FEM analysis of the 2D axisymmetric model and 3D model. This result demonstrated the validity of commercial software instead of proprietary in-house code that is more costly to develop and maintain.

CANDU형 핵연료거동에 관한 계산모형의 검토 및 거동특성에 관한 변수적 연구 (Review of Calculational Model for the Performance of CANDU-Type Nuclear Development and Parametric Study on the Fuel Performance)

  • Man Sung Yim;Un Chul Lee;Ho Chun Suk
    • Nuclear Engineering and Technology
    • /
    • 제15권1호
    • /
    • pp.57-69
    • /
    • 1983
  • 경수형원자로 핵연료봉의 거동분석을 위한 전산코드인 FRAPCON-1 코드가 월성 1호기에 장전되는 CANDU형 핵연료봉의 거동분석을 위해 적절한지를 평가하였다. 연료내의 중성자속의 감소와 연료피복재간 열전달을 계산하는 FRAPCON-1 코드의 모형들을 수정하였으며 핵분열 기체방출모형의 CANDU 핵연료에 대한 타당성여부를 검토하였고 피복재와 냉각수간의 열전달 계수 계산을 위해 중수특성을 사용하였다. 수정된 코드 FRAPCON-1-CSK를 사용하여 월성 1호기 핵연료의 각 설계변수들에 대한 민감도 분석을 수행하였다. 아울러 월성 1호기 핵연료봉의 거동특성분석도 수행하였는데 계산된 결과들은 CANDU 핵연료봉에 대한 설계기준이 알러져 있지 않는 관계로 경수로 핵연료봉 설계기준의 입장에서 검토되었다.

  • PDF