• Title/Summary/Keyword: Fish pathogen

Search Result 119, Processing Time 0.029 seconds

Antiviral effects of various plant extracts against viral haemorrhagic septicaemia virus (VHSV) (바이러스성출혈성패혈증바이러스에 대한 식물 추출물의 항바이러스 효능 탐색)

  • Park, Ji-Yoon;Kim, Hyoung Jun;Choi, Hye-Sung;Kwon, Se Ryun
    • Journal of fish pathology
    • /
    • v.35 no.1
    • /
    • pp.41-46
    • /
    • 2022
  • Since viral haemorrhagic septicaemia virus (VHSV) was first reported in European rainbow trout (Oncorhynchus mykiss) in the 1930s, it has caused high prices in freshwater and saltwater fish around the world, causing enormous economic damage to the aquaculture industry. We have been seeking required countermeasures against viruses because of economic damage to the aquaculture industry. However, commercial vaccines have the limitations of being costly to use in farms and being effective to only one pathogen. The aquaculture industry these days is taking on new alternatives to vaccines, antibiotics and chemicals. In this study, the suitability of antiviral effects against VHSV was evaluated in vitro for various plant extracts to judge their effectiveness. Atriplex gmelinii, Ixeris repens, Arctium lappa, and Sargassum coreanum were tested to know the correlation between the amount of virus and the concentration of extract investigates if these extracts have antiviral effects. Virus and extracts at various concentrations were inoculated simultaneously as 1:1 ratio into EPC cell lines. There are no antiviral effects with Atriplex gmelinii, Ixeris repens and Arctium lappa. Extract of Sargassum coreanum only has the antiviral activity in a dose-dependent manner. These results show that extract of Sargassum coreanum can be used in aquaculture industry as an antiviral materials.

Detection of Viral Hemorrhagic Septicemia Virus (VHSV) from marine fish in the South Western Coastal Area and East China Sea (남.서해안과 동중국해 자연산 어류에서 Viral Hemorrhagic Septicemia Virus(VHSV)검출)

  • Lee, Wol-La;Yun, Hyun-Mi;Kim, Seok-Ryel;Jung, Sung-Ju;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.20 no.3
    • /
    • pp.201-209
    • /
    • 2007
  • Viral hemorrhagic septicemia (VHS) is one of the most serious viral disease of farmed rainbow trout and some marine fishes in Europe and North America. It has been reported in various marine fish species of Asian countries and induced cause mass mortality in Japanese flounder (Paralichthys olivaceus) culturing in Korea. The aims of this study were to monitor VHSV in wild marine fishes and to give critical information for controling the disease through prophylactic methods. Prevalence of the viral disease, geological distribution and reservoir of the virus were investigated using wild marine fishes captured in southern coast and east china sea for two years. (Reverse Transcriptase Polymerase Chain Reaction) RT-PCR results showed that VHSV were detected in 17 (10.6%) out of 160 fish. G gene sequences of viral strains isolated in this study were closely related to that of a reference strain, KVHS01-1, belonging to VHSV genotype Ⅰ. The results suggest that some of wild marine fishes are VHSV carriers and may spread the pathogen directly to fish farmed in coastal area.

Detection of Red Sea Bream Iridovirus (RSIV) from marine fish in the Southern Coastal Area and East China Sea (남.서해안과 동중국해 자연산 어류에서 Red Sea Bream Iridovirus (RSIV)의 검출)

  • Lee, Wol-La;Kim, Seok-Ryel;Yun, Hyun-Mi;Kitamura, Shin Ichi;Jung, Sung-Ju;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.20 no.3
    • /
    • pp.211-220
    • /
    • 2007
  • Red sea bream iridovirus disease (RSIVD) cause massive economic losses in marine aquaculture industry in Korea. The causative agent of this disease (RSIV) infects a wide range of fish species. The aims of this study were to monitor RSIV in wild marine fishes and to give critical information for controling the disease through prophylactic methods. Prevalence of the viral disease, geological distribution and reservoir of the virus were investigated using wild marine fishes captured in southern coast and east china sea for two years. (Polymerase Chain Reaction) PCR results showed that RSIV were detected in 39 (24.3%) out of 160 fish. MCP gene sequences of viral strains isolated in this study were closely related to that of a reference strain, red seabream-K, belonging to Megalocytivirus subgroup Ⅲ. The results suggest that some of wild marine fishes are RSIV carriers and may spread the pathogen directly to fish farmed in coastal area.

Reducing Effect of Microorganism on Meat and Fish Products by Repeated γ-Irradiation at Low Dose (저선량 감마선 반복조사의 육류와 생선 중 미생물 저감효과)

  • Je, Gil-Soo;Chung, Duck-Hwa;Shim, Won-Bo
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.1
    • /
    • pp.92-97
    • /
    • 2015
  • The aim of this study is to examine the removal efficiency of pathogen (Escherichia coli O157:H7 and Salmonella typhimurium) on meat and fish products (packing condition: vacuum or not and storage temperature: $4^{\circ}C$ or $-20^{\circ}C$) repeatedly exposed at low-dose gamma irradiation. In case of meat products (beef and chicken), E. coli O157:H7 was not observed at the level of 2 kGy single gamma irradiation and 0.5 kGy repeated gamma irradiation and S. Typhimurium was not observed at the level of 2 kGy single gamma irradiation and 1 kGy repeated gamma irradiation. In case of fish products, E. coli O157:H7 and S. Typhimurium were not detected at the level of 0.5 kGy single and repeated gamma irradiation. These results showed that microorganisms on fish products were more efficiently removed than those of meat products with low-dose gamma irradiation. Generally, each packing condition made no difference. However, the products (fish and meat) stored at $-20^{\circ}C$ needed more higher dose gamma irradiation than products at $4^{\circ}C$.

Effects of various concentrations of skullcap extract in the diets on disease resistance of olive flounder, Paralichthys olivaceus (생약재 황금 뿌리 열수추출물의 넙치 투여시 질병저항성에 미치는 영향)

  • Jee, Bo-Young;Seo, Jung-Soo;Jeon, Eun-Ji;Lee, Eun-Hye;Choi, Hee-Jung;Kim, Jin-Do;Jung, Sung-Hee;Park, Myoung-Ae
    • Journal of fish pathology
    • /
    • v.25 no.1
    • /
    • pp.21-30
    • /
    • 2012
  • Effects of various concentration of skullcap Scutellaria baicalensis in the diets on a nonspecific immunity and a disease resistance of olive flounder were investigated. After feeding trial, weight gain of fish fed 0.05% skullcap immersed group was higher than that of fish fed 0, 0.1 and 1% skullcap diet but no significant differences were observed among the experimental groups. Furthermore, no significant differences in hematological indices of olive flounder were found among the experimental groups. Lysozyme activity in the serum and kidney of the administrated group(0.05% skullcap immersed group) was significantly higher than the control group. In addition, the chemiluminescent(CL) responses of head kidney leucocytes from the 0.05% skullcap immersed group was significantly higher(P<0.05) than the control group. In the histological results, the 1% skullcap immersed group appeared to have the detrimental effects for fish health. In a challenge experiment with Edwardsiella tarda(GY-01) and Streptococcus iniae(FT5228), relative percent survival (RPS) in the 0.05% skullcap immersed group was higher than the control group injected with E. tarda(GY-01) at $4^{th}$ and $8^{th}$ weeks. The results suggest that the skullcap extract (0.05%) would be effective to enhance the nonspecific immunity and protective ability of olive flounder against fish pathogen such as E. tarda.

Microbial Contamination Analysis to Assess the Safety of Marketplace Sushi (유통중인 생선초밥의 오염 미생물 분석)

  • Cho, Sun-Kyung;Moon, Bo-Youn;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.334-338
    • /
    • 2009
  • To determine the contamination status of Sushi fish and rice, seventy-nine samples of Sushi were collected from wholesale markets and Japanese restaurants within the Seoul area and subsequently analyzed for food-borne pathogens. Total aerobic counts ranged from 4 to 6 log CFU/g for the sliced raw fish, and from 3 to 5 log CFU/g for the boiled rice. Higher levels of contamination were detected in bream and shrimp Sushi versus other types. Coliform counts of 3-4 log CFU/g were detected in the sliced raw fish, whereas levels in the boiled rice were one log CFU/g lower compared to the raw fish. The raw Sushi fish had higher amounts of contamination than the boiled rice, however, E.coli was not detected. The prevalence rates of pathogens, namely Staphylococcus aureus and Bacillus cereus, in the raw fish were 17% and 10%, respectively. Similarly, the prevalence rates in the boiled rice were 11% and 8% for S. aureus and B.cereus, respectively. Salmonella and Listeria monocytogenes were also detected; however, other pathogens such as Vibrio parahaemolyticus, Clostridium perfrigens, and Yersinia enterocolitica were not detected. Among the high contaminating pathogens, B.cereus was found in 13% of samples from the wholesale markets, while S.aureus was found in 30% of samples from the Japanese restaurants. Therefore, these data suggest that the primary microbial hazard factors for Sushi are S. aureus and B. cereus, in addition to V. parahaemolyticus, and further risk assessments should focus on those pathogens.

Viability of Vibrio parahaemolyticus and V. vulnificus isolated from human in cultured olive flounder (Paralichthys olivaceus) (Vibrio parahaemolyticus와 V. vulnificus 사람 분리균의 넙치, Paralichthys olivaceus에서의 생존율)

  • Im, Su Yeon;Kim, Eunheui
    • Journal of fish pathology
    • /
    • v.35 no.1
    • /
    • pp.57-63
    • /
    • 2022
  • Vibrio parahaemolyticus and V. vulnificus are known to be infected to human via fisheries products. Therefore, food safety of fisheries products is important for public health and fish industry. This paper was conducted to know how well these human isolates can survive in olive flounder (Paralichthys olivaceus). The growth of V. parahaemolyticus and V. vulnificus showed about 50~60% reduced rates at 25℃ than at 37℃ and did not show any differences according to NaCl concentration of media except the increasing in the growth of V. vulnificus in medium containing 3% NaCl. Artificial infection of 1×106 CFU/fish was carried out to confirm the sensitivity of olive flounder against V. parahaemolyticus and V. vulnificus. After 1 week from injection, no fish was dead. To evaluate nonspecific defense of olive flounder against V. parahaemolyticus and V. vulnificus, the antibacterial potency of serum and epidermal mucus were tested. The number of the vibrios exposed to serum obtained from olive flounder significantly decreased after 3 hours, and epidermal mucus showed decrease of the bacteria over than 90% until 12 hours from exposure. Phagocytosis of head kidney leucocytes of healthy olive flounder against V. parahaemolyticus and V. vulnificus showed in over 70% of leucocytes at the 2 hours. Therefore, cultured olive flounder only as vehicle for human pathogen in environmental water is well developed its antibacterial potency against human pathogens, so the viability of V. parahaemolyticus and V. vulnificus in cultured olive flounder was considered very low.

Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model

  • Shin, Sangyeop;Kulatunga, D.C.M.;Dananjaya, S.H.S.;Nikapitiya, Chamilani;Lee, Jehee;De Zoysa, Mahanama
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.297-311
    • /
    • 2017
  • Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin $[IL]-1{\beta}$, tumor necrosis factor ${\alpha}$, IL-6, IL-8, interferon ${\gamma}$, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules ($CD8^+$ and $CD4^+$) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as $200{\mu}g/mL$ and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection.

Characterization of Vibrio harveyi, the Causal Agent of Vibriosis in Cultured Marine Fishes in Korea

  • Won, Kyoung-Mi;Kim, Su-Mi;Park, Soo-Il
    • Fisheries and Aquatic Sciences
    • /
    • v.9 no.3
    • /
    • pp.123-128
    • /
    • 2006
  • An epizootic causing mortality among cultured marine finfishes occurred in 1999 in the province of Kyoungsang, Korea. The disease was characterized by the presence of enterocele, abdominal swelling, and gastroenteritis. The causative bacteria were isolated from olive flounder (Paralichthys olivaceus), black rockfish (Sebastes schlegeli), turbot (Scophthalmus maximus) and the rearing water. These bacteria showed swarming activity on agar plates and yellowish or greenish colonies on thiosulfate-citrate-bile salts-sucrose (TCBS) agar plates, but no luminescence. The pathogen was identified as Vibrio harveyi based on morphological and biochemical characteristics and the sequence of l6S rDNA. The lethal doses (LD$_{50}$) of olive flounder and black rockfish were estimated to be $1.24\times10^6-1.36\times10^8$ and $3.24\times10^5-5.8\times10^7$ CFU/fish respectively following intraperitoneal injection.

Antimicrobial, Antioxidant and Hemolytic Activity of Water-soluble Extract of Mottled Anemone Urticina crassicornis

  • Lee, Ye Jin;Kim, Chan-Hee;Oh, Hye Young;Go, Hye-Jin;Park, Nam Gyu
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.4
    • /
    • pp.341-347
    • /
    • 2015
  • We evaluated the biological activities of five water extracts of tissue of the mottled anemone Urticina crassicornis. Most extracts exhibited broad-spectrum antimicrobial activity as determined by ultrasensitive radial diffusion assay (URDA) against gram-positive and -negative bacteria, including a fish pathogen, Aeromonas hydrophila, but no activity against fungi. The activity of the extracts was abolished by tryptic digestion, indicating that protein compounds were responsible for the antimicrobial activity. Furthermore, in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging activity assay, only the visceral tissue extract showed activity. However, no extract had hemolytic activity against human red blood cells. Consequently, this study suggests the water-soluble extract of mottled anemone to be a promising source of proteinaceous antimicrobial compounds that can be utilized for development of novel antibiotics.