• Title/Summary/Keyword: Fish farming impact

Search Result 12, Processing Time 0.023 seconds

Mass Balance of Finfish Cage Farm in South Korea (어류가두리 양식장의 물질수지 산정)

  • Bo-Ram Sim;Hyung Chul Kim;Sang-Pil Yoon;SokJin Hong;Woosung Jung;Sungchan Kang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.473-483
    • /
    • 2023
  • This study was conducted to better understand the impact of marine fish farming by estimating mass balances of carbon and nitrogen. According to the results, 94.55% of carbon and 95.66% of nitrogen inputs were from the feed supplied in the farm. Of the total carbon emissions in the farm, 47.28% was due to fish respiration, which was subsequently released into seawater. Advection and diffusion in the farm contributed to 30.29% of the carbon released. In the case of nitrogen, 50.70% of the nitrogen released into the seawater was produced by fish excreta, and 31.37% was advected and diffused into the system. The sedimentary environment received 3.82% and 3.10% of the carbon and nitrogen released from the farm, respectively. The fish feed used for healthy growth contained 11.64% carbon and 9.17% nitrogen. Since the feed type was floating pellets, the load released into the sedimentary environment was relatively lower than that released into the marine environment. These findings suggest that the identification of an optimal fish feed that respects fish physiology and preserves a healthy ecology is critical for the future of aquaculture. Furthermore, ecosystem-based aquaculture systems that decrease environmental burden, while endeavoring to improve environmental health, are required.

The Causality and Volatility Spillover between Farming fish Species in Consumption Replacement Relation (소비 대체 양식어종 간의 가격 인과성과 변동성 전이에 관한 연구)

  • Kang, Seok-Kyu
    • The Journal of Fisheries Business Administration
    • /
    • v.46 no.3
    • /
    • pp.119-127
    • /
    • 2015
  • This study is to analyse the causality and volatility spillover between farming fish species in consumption replacement relation using flatfish(oliver flounder) and rockfish's wholesale market price data from September 2006 to July 2015. For the analysis, VAR(5) model and bivariate asymmetric GARCH-BEKK model are employed. The empirical results of this study are summarized as follows: First, the price volatility of flatfish and rockfish is very large without the trend during the sample period. Second, the correlation coefficient between flatfish and rockfish wholesale markets has positive 0.1059 value. Third, causality relation is unidirectional from rockfish market to flatfish market. Fourth, conditional volatility spillover effect is unidirectional from rockfish market to flatfish market, but asymmetric volatility effect is bidirectional between flatfish and rockfish markets that implies the bad news arising from flatfish wholesale market impact on rockfish market's volatility and the bad news arising from rockfish wholesale market impact on flatfish market's volaltilty. Consequently, based on the thus results, the volatility spillover effect interacts and is bidirectional between flatfish and rockfish wholesale markets.

Organic Matter and Heavy Metals Pollution Assessment of Surface Sediment from a Fish Farming Area in Tongyoung-Geoje Coast of Korea (통영-거제 연안 어류 양식장 표층 퇴적물 중 유기물 및 중금속 오염 평가)

  • Hwang, Dong-Woon;Hwang, Hyunjin;Lee, Garam;Kim, Sunyoung;Park, Sohyun;Yoon, Sang-Pil
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.510-520
    • /
    • 2021
  • To understand the status of organic matter and heavy metal pollution in surface sediment of a fish farming area, we have measured the concentrations of total organic carbon (TOC), total nitrogen (TN), and heavy metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, and Zn) in surface sediments of a fish farming area near Tongyoung-Geoje coast. The mean concentrations of TOC and TN were 22.7 mg/g and 3.4 mg/g, respectively, and were much higher than those in surface sediments of a semi-enclosed bay in the southern coast of Korea. The mean concentrations of As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, and Zn were 10.5 mg/kg, 0.37 mg/kg, 82.9 mg/kg, 127 mg/kg, 4.19%, 0.041 mg/kg, 596 mg/kg, 39.5 mg/kg, and 175 mg/kg, respectively, and the mean concentrations of Cd and Cu were three times higher than those in surface sediments of shellfish farming area in the southeastern coast of Korea. In addition, the concentrations of TOC and corrected Cu exceeded the values of sediment quality guidelines applied in Korea, and pollution load index (PLI) and ecological risk index (ERI) showed that the metal concentrations in the sediments of some fish farming area have a strongly negative ecological impact on benthic organisms, although most metal concentrations did not exceed the sediment quality guidelines. Based on overall assessment results, the surface sediments of fish farming areas in the study region are polluted with organic matter and some heavy metals. Thus, a comprehensive management plan is necessary to improve the sedimentary environments, identify primary contamination sources, and reduce the input of pollution load for organic matter and heavy metals in the sediments of fish farming areas.

Impact of Fish Farming on Macrobenthic Polychaete Communities (해상 가두리 양식이 저서 다모류군집에 미치는 영향)

  • Jung, Rae-Hong;Yoon, Sang-Pil;Kwon, Jung-No;Lee, Jae-Seong;Lee, Won-Chan;Koo, Jun-Ho;Kim, Youn-Jung;Oh, Hyun-Taik;Hong, Sok-Jin;Park, Sung-Eun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.159-169
    • /
    • 2007
  • Excessive input of organic matters from fish cage farms to the coastal waters has been considered as one of the major factors disturbing their benthic ecosystem. Sediment samples were taken from around the two fish cage zones (A and B) in Tongyeong coast in June and August 2003, to evaluate the ecological impacts of fish cage farming activity on the macrobenthic polychaete communities. Polychaete accounted for $81{\sim}87%$ of the total macrofauna individuals from each of the sampling stations. The number of species, abundance, diversity and dominant species of polychaete were rapidly changed with the distance from the fish cages. Within 10 m from the fish cages, Capitella capitata, which is a bio-indicator for the highly enriched sediments, was a dominant species and the lowest diversity was recorded. In particular, the maximum density (${\sim}18,410\;ind.m^2$) of C. capitata was found at Farm A where fish cages were more densely established within a semi-enclosed bay system. The sampling zone between 10 m and 15 m showed a rapid decrease of C. capitata with a rapid increase of the numbers of species, implying that this zone may be an ecotone point from a highly to a slightly enriched area. In the sampling zone between 15 m and 60 m, a transitional zone, which represents slightly enriched condition before normal one, was observed with additional increase and maintenance of the number of species and density of polychaete. In addition, the potential bio-indicators of organic enrichment, such as Lumbrineris longifolia and Aphelochaeta monilaris were the predominant species in the sampling zone. Multidimensional scaling (MDS) ordination plots and k-dominance curves confirmed the above results on the gradual changes in the macrobenthic polychaete communities. Our findings suggest that the magnitude of impact of fish cage farming activity on polychaete communities is probably governed by a distance from fish cage, density of fish cage and geomorphological characteristics around fish cage farm.

Effect of an Offshore Fish Culture System on the Benthic Polychaete Community (외해가두리 양식이 저서다모류군집에 미치는 영향)

  • Jung, Rae-Hong;Yoon, Sang-Pil;Kim, Youn-Jung;Lee, Won-Chan;Hong, Sok Jin;Park, Sung-Eun;Oh, Hyung Taik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.4
    • /
    • pp.195-205
    • /
    • 2013
  • Excessive input of organic matters from fish cage farming has been considered as one of the major factors disturbing benthic ecosystem, especially in semi-enclosed coastal waters. Recently offshore aquaculture in the vicinity of Jeju-do has been introduced to minimize that kind of negative impact. This study was conducted to investigate the ecological impacts of offshore aquaculture on the macrobenthic polychaete communities. A total of ten sampling works were carried out for 28 months, spanning from 10 days after starting giving feed to 3 months after stopping giving feed. During the study period, mean current velocity was quite strong with the range of 50 cm/s to 70 cm/s. TOC of surface sediment was constantly low. Significant changes in polychaete community were detected just three months after starting giving feed, which were the increase of the number of species and density at all stations. Up to 18 months after the start of farming, the amount of feed provided played an important role in the fluctuation of the number of species and density, especially at 0 m and 10 m stations. After reducing the amount of feed provided, dominance of some opportunistic species within 10 m distance from fish cages still lasted to the end of aquaculture. However, opportunistic species disappeared 3 months after the end of farming, which indicated the sign of recovery from the disturbance. From these results, the amount of food input and the period of cultivation were critical factors disturbing polychaete community and ensuing changes in this offshore and oligotrophic waters as well. In addition, study on the changes of polychaete community structure before and after fish farming showed more detailed changes in benthic ecological state than geochemical approach did.

Perception on Impact of Climate Change on Forest Ecosystem in Protected Area of West Bengal, India

  • Dey, Tanusri;Pala, Nazir A.;Shukla, Gopal;Pal, Prabhat K.;Chakravarty, Sumit
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • In the present exploration we identified perception of forest dependent communities in relation to impact of climate change on forest ecosystem in and around Chilapatta reserve forest in northern part of West Bengal, India. Purposive sampling method was used for selection of area and random sampling method was used for selection of respondent. The data collection in this study was through questionnaire based personal in-depth interviews. Almost all the respondents (94%) were farmers and rest had occupation other than farming. Almost all the respondents perceived negative impact of climate change on forest though the level of perception varies from very low to medium (0.23-0.52) based on average perception score after assigning score to individual statements. The level of perception on impact of climate change on forest ecology and forest flora of the community is low and very low as the average perception score is 0.39 and 0.23, respectively while, it is medium (0.52) for forest fauna. Alternately their perception on decreased stream/river flow and quick drying of seasonal streams or water bodies is based on their livelihood experience as they depend on these for their domestic and irrigation water use and fish catch for family diet.

Effect of oxygen micro-bubble for the temperature and oxygen concentrations of fish farming facility (미세기포 액화산소가 가두리양식장의 수온 및 산소농도에 미치는 영향)

  • AN, Na;LEE, Jeong Kyu;LEE, Jun Seok;CHOI, Keun-Hyung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.4
    • /
    • pp.407-418
    • /
    • 2020
  • Mass mortality of mariculture fish due to high summer temperatures is a major issue in the mariculture industry in many coastal waters of Korea, yet measures to mitigate the impact are generally limited. We injected a micro-bubble of liquefied oxygen into the bottom of rockfish cages (about 6-8 m deep) in order to maximize the dispersal of micro-bubbled seawater and reduce fish mortality. The injection of low-temperature oxygen in micro-bubbles lowered the water temperature at the injection area by as much as 1℃ and increased dissolved oxygen concentration by 0.5 ppm. In early August, following a week with persistent high water temperature (above 28.5℃), there was an increase in fish mortality despite the micro-bubble system, which resulted in approximately 7% death of the total introduced fish population. However, this mortality appeared to be much lower than mortality reported in a neighboring mariculture facility (approximately 50% mortality). We also estimated the volume that can be recirculated with pumped seawater using a micro-bubble system. We suggest that this approach of injecting liquefied oxygen through a micro-bubble system may reduce fish mortality during high temperature periods.

Changes of serum cortisol concentration and stress responses in cohe salmon(Oncorhynchus kisutch) to netting (그물작업에 의한 은연어의 스트레스 반응)

  • JEON Joong-Kyun;KIM Pyong-Kih;PARK Yong-Joo;MYOUNG Jung-Goo;KIM Jong-Man
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.2
    • /
    • pp.115-118
    • /
    • 2000
  • The production of cultured coho salmon (Oncorhpchus kisutoh) in Korea has being increased year after year. Smolt being reared in freshwater suffer transferring into seawater and are farmed in cages for fattening. This handling processes including transportation, confinement into cages are unavoidable stress to fish in salmon farming and often end up to mass mortality, This study aimed to investigate the impact of handling process on the stress responses of coho salmon. The indicator of stress was measured by cortisol to be a first response, and for the second response test, glucose, triBlyceride, cholesterol, lactate and electrolyte of $K^+, Na^+, Cl^-$ in serum and the activities of alanine aminotrtnferase (ALT), aspartate aminotransferase(AST) and lactate dehydrogenase (LDH) were analyzed. As a result, the concentration of cortisol, glucose as well as LDH activity were significantly increased, whereas others showed no difference comparing with control group. It obviously demonstrated that handling process made fish stressful.

  • PDF

A TabNet - Based System for Water Quality Prediction in Aquaculture

  • Nguyen, Trong–Nghia;Kim, Soo Hyung;Do, Nhu-Tai;Hong, Thai-Thi Ngoc;Yang, Hyung Jeong;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.39-52
    • /
    • 2022
  • In the context of the evolution of automation and intelligence, deep learning and machine learning algorithms have been widely applied in aquaculture in recent years, providing new opportunities for the digital realization of aquaculture. Especially, water quality management deserves attention thanks to its importance to food organisms. In this study, we proposed an end-to-end deep learning-based TabNet model for water quality prediction. From major indexes of water quality assessment, we applied novel deep learning techniques and machine learning algorithms in innovative fish aquaculture to predict the number of water cells counting. Furthermore, the application of deep learning in aquaculture is outlined, and the obtained results are analyzed. The experiment on in-house data showed an optimistic impact on the application of artificial intelligence in aquaculture, helping to reduce costs and time and increase efficiency in the farming process.

A Study of Marine Aquaculture Management Strategies Using Remotely-sensed Satellite Data - A Case Study on Hallyeo Marine National Park and Tasmania - (위성영상을 이용한 해상 양식장 관리방안 연구 - 한려해상 국립공원과 호주 태즈매니아 지역을 사례로 -)

  • Park, Kyeong;Chang, Eunmi
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.5
    • /
    • pp.231-241
    • /
    • 2004
  • This study aims to detect the change of marine aquaculture farm within the boundary of Hallyeo Marine National Park. Comparison has been made on the Landsat images taken in 1984 and 2002 respectively by using feature extraction methods and other image analysis techniques. During the 18 year period between 1984 and 2002, total area of the aquaculture farms has been decreased in 63 percent. The reason for the change seems to be that aquaculture farms became concentrated only around the Geoje Islands due to the growth of the labor- and capital-intensive cage aquaculture for the expensive fish species instead of traditional oyster farming. Authors suggest the monitoring using remotely-sensed data as the best tool for the management of marine aquaculture farms on the basis of accuracy of analysis and relatively cheap cost. Management strategies of salmon farms in Tasmania, Australia has been analyzed to find the field techniques necessary for the management of aquaculture.