• Title/Summary/Keyword: Fish embryo toxicity test (FET)

Search Result 3, Processing Time 0.015 seconds

Effect of Nanomaterials on the Early Development of Fish Embryos: (2) Metallic Nanomaterials (어류수정란 발달에 미치는 나노독성 연구동향: (2) 금속계 나노물질)

  • Shin, Yu-Jin;An, Youn-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.943-953
    • /
    • 2012
  • Because of their unique properties, nano-sized metallic nanomaterials (NMs) have been used in extensive applications of biomedicine, electronics, optics, engineering, and personal care products. Accordingly, with the increasing release of NMs into the environment, numerous studies of nanoecotoxicity have been conducted. Fish embryo toxicity test (FET) has many benefits in evaluating toxicity of NMs as an alternative to a whole-body test in fish. In this study, we collected and analyzed the toxicity studies of metallic NMs on freshwater fish embryos. Most studies have demonstrated that metallic NMs are highly toxic during the early development of fish embryos. However, it should be noted that the results for the same NMs on the same test species show variation due to differences in the size or surface properties of the test NMs and exposure conditions. For the safe use of metallic NMs, we need to analyze their effects based on their properties, test species, environmental media, and diverse conditions.

Effect of Nanomaterials on the Early Development of Fish Embryos: (1) Carbon and Other Nanomaterials (어류수정란 발달에 미치는 나노독성 연구동향: (1) 탄소계 및 기타 나노물질)

  • Shin, Yu-Jin;An, Youn-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.762-767
    • /
    • 2012
  • The ecotoxicity assessment of nanomaterials (NMs) in the environment is actively conducted throughout the world because of the concerns about their potential risk from usage and release into the environment, as well as their unique physiochemical properties. Ecotoxicity tests for NMs have been conducted using various species and methods; however, in spite of these efforts, the characteristics and toxicity of NMs have not been defined. The fish embryo toxicity test (FET) has been conducted extensively to evaluate the toxicity of NMs as an alternative to a whole-body test in fish. In this study, we collected and analyzed the trends of nanotoxicity on the early development of freshwater fish. The model nanomaterials are carbon NMs ($C_{60},\;C_{70},\;C_{60}$(OH)n and carbon nanotube). Their adverse effects were extensively investigated based on the properties of NMs, test species, and diverse exposure conditions.

The effects of algal-derived organic matters (AOMs) and chlorinated AOMs on the survival and behavior of zebrafish

  • Se-Hyun Oh;Jing Wang;Jung Rae Kim;Yunchul Cho
    • Membrane and Water Treatment
    • /
    • v.14 no.3
    • /
    • pp.141-146
    • /
    • 2023
  • Algal organic matters (AOMs) are challenging to remove using traditional water treatment methods. Additionally, they are recognized as disinfection by product (DBP) precursors during the chlorination process. These compounds have the potential to seriously harm aquatic creatures. Despite the fact that AOMs and DBPs formed from algae can harm aquatic species by impairing their cognitive function and causing behavioral problems, only a few studies on the effects of AOMs and associated DBPs have been conducted. To assess the impact of extracellular organic materials (EOMs) produced by three different hazardous algal species and the chlorinated EOMs on zebrafish, this study used fish acute embryo toxicity (FET) and cognitive function tests. With rising EOM concentrations, the embryo's survival rate and mental capacity both declined. Of the three algal species, the embryo exposed to Microcystis aeruginosa EOM exhibited the lowest survival rate. On the other hand, the embryo exposed to EOMs following chlorination demonstrated a drop in CT values in both the survival rate and cognitive ability. These findings imply that EOMs and EOMs treated with chlorine may have detrimental effects on aquatic life. Therefore, an effective EOM management is needed in aquatic environment.