Browse > Article

Effect of Nanomaterials on the Early Development of Fish Embryos: (2) Metallic Nanomaterials  

Shin, Yu-Jin (Department of Environmental Science, Konkuk University)
An, Youn-Joo (Department of Environmental Science, Konkuk University)
Publication Information
Abstract
Because of their unique properties, nano-sized metallic nanomaterials (NMs) have been used in extensive applications of biomedicine, electronics, optics, engineering, and personal care products. Accordingly, with the increasing release of NMs into the environment, numerous studies of nanoecotoxicity have been conducted. Fish embryo toxicity test (FET) has many benefits in evaluating toxicity of NMs as an alternative to a whole-body test in fish. In this study, we collected and analyzed the toxicity studies of metallic NMs on freshwater fish embryos. Most studies have demonstrated that metallic NMs are highly toxic during the early development of fish embryos. However, it should be noted that the results for the same NMs on the same test species show variation due to differences in the size or surface properties of the test NMs and exposure conditions. For the safe use of metallic NMs, we need to analyze their effects based on their properties, test species, environmental media, and diverse conditions.
Keywords
Embryonic development; Fish embryo toxicity test (FET); Metal nanoparticles; Nanomaterials; Nanotoxicity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Wu, Y., Zhou, Q., Li, H., Liu, W., Wang, T., and Jiang, G. (2010). Effects of Silver Nanoparticles on the Development and Histopathology Biomarkers of Japanese Medaka (Oryzias latipes) Using the Partial-Life Test, Aquatic Toxicology, 100(2), pp. 160-167.   DOI   ScienceOn
2 Xia, T., Zhao, Y., Sager, T., George, S., Pokhrel, S., Li, N., Schoenfeld, D., Meng, H., Lin, S., Wang, X., Wang, M., Ji, Z., Zink, J. I., Madler, L., Castranova, V., Lin, S., and Nel, A. E. (2011). Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos, ACS Nano, 5(2), pp. 1223-1235.   DOI   ScienceOn
3 Xu, X. H. N., Brownlow, W. J., Kyriacou, S. V., Wan, Q., and Viola, J. J. (2004). Real-Time Probing of Membrane Transport in Living Microbial Cells Using Single Nanoparticle Optics and Living Cell Imaging, Biochemistry, 43(32), pp. 10400-10413.   DOI   ScienceOn
4 Xu, X. H. N., Chen, J., Jeffers, R. B., and Kyriacou, S. V. (2002). Direct Measurement of Sizes and Dynamics of Single Living Membrane Transporters Using Nano-Optics, Nano Letters, 2(3), pp. 175-182.   DOI   ScienceOn
5 Yeo, M.-K., and Kang, M. (2008). Effects of Nanometer Sized Silver Materials on Biological Toxicity During Zebrafish Embryogenesis, Korean Chemical Society, 29(6), pp. 1179-1184.   DOI
6 Yeo, M.-K., and Kang, M. (2009). Effects of CuxTiOy Nanometer Particles on Biological Toxicity During Zebrafish Embryo Genesis, Korean Journal of Chemical Engineering, 26(3), pp. 711-718.   DOI   ScienceOn
7 Yeo, M.-K., and Kim, H.-E. (2010). Gene Expression in Zebrafish Embryos Following Exposure to $TiO_2$ Nanoparticles, Molecular & Cellular Toxicology, 6(1), pp. 97-104.   DOI
8 Zhu, X., Wang, J., Zhang, X., Chang, Y., and Chen, Y. (2009). The Impact of ZnO Nanoparticle Aggregates on the Embryonic Development of Zebrafish (Danio rerio), Nanotechnology, 20(19), pp. 195103-195103.   DOI   ScienceOn
9 Zhu, X., Zhu, L., Duan, Z., Qi, R., Li, Y., and Lang, Y. (2008). Comparative Toxicity of Several Metal Oxide Nanoparticle Aqueous Suspensions to Zebrafish (Danio rerio) Early Developmental Stage, Journal of Environmental Science and Health, Part A, 43(3), pp. 278-284.   DOI   ScienceOn
10 Adams, L. K., Lyon, D. Y., and Alvarez, P. J. J. (2006). Comparative Eco-Toxicity of Nanoscale $TiO_2$, $SiO_2$ and ZnO Water Suspensions, Water Research, 40(19), pp. 3527-3532   DOI   ScienceOn
11 Aitken, R. J., Chaudhry, M. Q., Boxall, A. B., and Hull, M. (2006). Manufacture and Use of Nanomaterials: Current Status in the UK and Global Trends, Occupational Medicine, 56(5), pp. 300-306.   DOI   ScienceOn
12 Asharani, P. V., lianwu, Y., Gong, Z., and Valiyaveettil, S. (2011). Comparison of the Toxicity of Silver, Gold and Platinum Nanomaterials in Developing Zebrafish Embryos, Nanotoxicology, 5(1), pp. 43-54.   DOI   ScienceOn
13 Asharani, P. V., Wu, Y. L., Gong, Z., and Valiyaveettil, S. (2008). Toxicity of Silver Nanoparticles in Zebrafish Models, Nanotechnology, 19(25), pp. 255102-255109.   DOI   ScienceOn
14 Asz, J., Asz, D., Moushey, R., Seigel, J., Mallory, S. B., and Foglia, R. P. (2006). Treatment of Toxic Epidermal Necrolysis in a Pediatric Patient with a Nanocrystalline Silver Dressing, Journal of Pediatric Surgery, 41(12), pp. e9-e12.   DOI   ScienceOn
15 Browning, L. M., Lee, K. J., Huang, T., Nallathamby, P. D., Lowman, J. E., and Xu, X.-H. N. (2009). Random Walk of Single Gold Nanoparticles in Zebrafish Embryos Leading to Stochastic Toxic Effects on Embryonic Developments, Nanoscale, 1(1), pp. 138-152.   DOI   ScienceOn
16 Bai, W., Zhang, Z., Tian, W., He, X., Ma, Y., Zhao, Y., and Chai, Z. (2010). Toxicity of Zinc Oxide Nanoparticles to Zebrafish Embryo: a Physicochemical Study of Toxicity Mechanism, Journal of Nanoparticle Research, 12(5), pp. 1645-1654.   DOI   ScienceOn
17 Bar-Ilan, O., Albrecht, R. M., Fako, V. E., and Furgeson, D. Y. (2009). Toxicity Assessments of Multisized Gold and Silver Nanoparticles in Zebrafish Embryos, Small, 5(16), pp. 1897-1910.   DOI   ScienceOn
18 Bar-Ilan, O., Louis, K. M., Yang, S. P., Pedersen, J. A., Hamers, R. J ., Peterson, R. E., and Heideman, W. (2012). Titanium Dioxide Nanoparticles Produce Phototoxicity in the Developing Zebrafish, Nanotoxicology, 6(6), pp. 670-679.   DOI   ScienceOn
19 Chen, T.-H., Lin, C.-Y., and Tseng, M.-C. (2011). Behavioral Effects of Titanium Dioxide Nanoparticles on Larval Zebrafish (Danio rerio), Marine Pollution Bulletin, 63(5-12), pp. 303-308.   DOI
20 Chen, J., and Poon, C. (2009). Photocatalytic Construction and Building Materials: From Fundamentals to Applications, Building and Environment, 44(9), pp. 1899-1906.   DOI   ScienceOn
21 Chen, X., and Schluesener, H. J. (2008). Nanosilver: a Nanoproduct in Medical Application, Toxicology Letter, 176(1), pp. 1-12.   DOI   ScienceOn
22 Cheng, D., Yang, J., and Zhao, Y. (2004). Antibacterial Materials of Silver Nanoparticles Applications in Medical Appliances and Appliances for Daily Use, Chinese Medical Equipment Journal, 4, pp. 26-32.
23 Cohen, M. S., Stern, J. N., Vanni, A. J., Kelley, R. S., Baumgart, E., Field, D., Libertino, J. A., and Summerhayes, I. C. (2007). In Vitro Analysis of Nanocrystalline Silver-Coated Surgical Mesh, Surgical Infections, 8(3), pp. 397-403.   DOI   ScienceOn
24 Colvin, V. L. (2003). The Potential Environmental Impact of Engineered Nanomaterials, Nature Biotechnology, 21(10), pp. 1166-1170.   DOI   ScienceOn
25 Embry, M. R., Belanger, S. E., Braunbeckc, T. A., Galay- Burgosd, M., Haldere, M., Hintonf, D. E., Leonardg, M. A., Lillicraph, A., Norberg-Kingi, T., and Whale, G. (2010). The Fish Embryo Toxicity Test as an Animal Alternative Method in Hazard and Risk Assessment and Scientific Research, Aquatic Toxicology, 97(2), pp. 79-87.   DOI   ScienceOn
26 Cowart, D. A., Guida, S. M., Shah, S. I., and Marsh, A. G. (2011). Effects of Ag Nanoparticles on Survival and Oxygen Consumption of Zebra Fish Embryos, Danio rerio, Journal of Environmental Science and Health, Part A, 46(10), pp. 1122-1128.   DOI
27 Daniel, M. C., and Astruc, D. (2004). Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chemical Reviews, 104(1), pp. 293-346.   DOI   ScienceOn
28 Dunford, R., Salinaro, A., Cai, L., Serpone, N., Horikoshi, S., Hidaka, H., and Knowland, J. (1997). Chemical Oxidation and DNA Damage Catalysed by Inorganic Sunscreen Ingredients, FEBS (Federation of European Biochemical Societies) Letters, 418(1-2), pp. 87-90.   DOI
29 Environmental Protection Agency (2007). http://www.epa.gov/osa/nanotech.htm
30 Federici, G., Shaw, B. J., and Handy, R. D. (2007). Toxicity of Titanium Dioxide Nanoparticles to Rainbow Trout (Oncorhynchus mykiss): Gill Injury, Oxidative Stress, and Other Physiological Effects, Aquatic Toxicology, 84(4), pp. 415-430.   DOI   ScienceOn
31 Fent, K., Weisbrod, C. J., Wirth-Heller, A., and Pieles, U. (2010). Assessment of Uptake and Oxicity of Fluorescent Silica Nanoparticles in Zebrafish (Danio rerio) Early Life Stages, Aquatic Toxicology, 100(2), pp. 218-228.   DOI   ScienceOn
32 Gao, J., Liang, G., Zhang, B., Kuang, Y., Zhang, X., and Xu, B. (2007). FePt@Cos2 Yolk-Shell Nanocrystals as a Potent Agent to Kill HeLa Cells, Journal of the American Chemical Society, 129(5), pp. 1428-1433.   DOI   ScienceOn
33 George, S., Xia, T., Rallo, R., Zhao, Y., Ji, Z., Lin, S., Wang, X., Zhang, H., France, B., Schoenfeld, D., Damoiseaux, R., Liu, R., Lin, S., Bradley, K. A., Cohen, Y., and Nel, A. E. (2011). Use of a High-Throughput Screening Approach Coupled with In Vivo Zebrafish Embryo Screening to Develop Hazard Ranking for Engineered Nanomaterials, ACS Nano, 5(3), pp. 1805-1817.   DOI   ScienceOn
34 Van Hoecke, K., Quik, J. T. K., Mankiewicz-Boczek, J., De Schamphelaere, K. A. C., Elsaesser, A., Van der Meeren, P., Barnes, C., McKerr, G., Howard C. V., Van De Meent, D., Rydzynski, K., Dawson, K. A., Salvati, A., Lesniak, A., Lynch, I., Silversmit, G., De Samber, B., Vincze, L., and Janssen C. R. (2009). Fate and Effects of CeO2 Nanoparticles in Aquatic Ecotoxicity Tests, Environmental Science & Technology, 43(12), pp. 4537-4546.   DOI   ScienceOn
35 Handley, D. A. (1989). Colloidal Gold: Principles, Methods and Applications, Hayat, M. A. (ed.), 1(1-2), Academic Press, New York, pp. 1-32, and References Therein.
36 Harper, S. L., Carriere, J. L., Miller, J. M., Hutchison, J. E., Maddux, B. L. S., and Tanguay, R. L. (2011). Systematic Evaluation of Nanomaterial Toxicity: Utility of Standardized Materials and Rapid Assays, ACS Nano, 5(6), pp. 4688-4697.   DOI   ScienceOn
37 Harper, S., Usenko, C., Hutchison, J. E., Maddux, B. L. S., and Tanguay, R. L. (2008). In Vivo Biodistribution and Toxicity Depends on Nanomaterial Composition, Size, Surface Functionalisation and Route of Exposure, Journal of Experimental Nanoscience, 3(3), pp. 195-206.   DOI   ScienceOn
38 Huff, T. B., Tong, L., Zhao, Y., Hansen, M. N., Cheng, J. X., and Wei, A. (2007). Hyperthermic Effects of Gold Nanorods on Tumor Cells, Nanomedicine, 2(1), pp. 125-132.   DOI   ScienceOn
39 Ispas, C., Andreescu, D., Patel, A., Goia, D. V., Andreescu, S., and Wallace, K. N. (2009). Toxicity and Developmental Defects of Different Sizes and Shape Nickel Nanoparticles in Zebrafish, Environmental Science & Technology, 43(16), pp. 6349-6356.   DOI   ScienceOn
40 Jovanovic, B., Anastasova, L., Rowe, E. W., Zhang, Y., Clapp, A. R., and Palic, D. (2011a). Effects of Nanosized Titanium Dioxide on Innate Immune System of Fathead Minnow (Pimephales Promelas Rafinesque, 1820), Ecotoxicology and Environmental Safety, 74(4), pp. 675-683.   DOI   ScienceOn
41 Jovanovic, B., Ji, T., and Palic, D. (2011b). Gene Expression of Zebrafish Embryos Exposed to Titanium Dioxide Nanoparticles and Hydroxylated Fullerenes, Ecotoxicology and Environmental Safety, 74(6), pp. 1518-1525.   DOI   ScienceOn
42 Jin, R. C., Cao, Y. W., Mirkin, C. A., Kelly, K. L., Schatz, G. C., and Zheng, J. G. (2001). Photoinduced Conversion of Silver Nanospheres to Nanoprisms, Science 294(5548), pp. 1901-1903.   DOI   ScienceOn
43 King-Heiden, T. C., Wiecinski, P. N., Mangham, A. N., Metz, K. M., Nesbit, D., Pedersen, J. A., Hamers, R. J., Heideman, W., and Peterson, R. E. (2009). Quantum Dot Nanotoxicity Assessment Using the Zebrafish Embryo, Environmental Science & Technology, 43(5), pp. 1605-1611.   DOI   ScienceOn
44 Kaida, T., Kobayashi, K., Adachi, M., and Suzuki, F. (2004). Optical Characteristics of Titanium Dioxide Interference Film and the Film Laminates with Oxides and Their Applications for Cosmetics, Journal of Cosmetic Science, 55(2), pp. 219-220.
45 Kim, S. W., Lee, W.-M., Shin, Y.-J., and An, Y.-J. (2012). Ecotoxicity Studies of Photoactive Nanoparticles Exposed to Ultraviolet Light, Journal of Korean Society of Environmental Engineers, 34(1), pp. 63-71. [Korean Literature]
46 Kim, J. S., Kuk, E., Yu, K. N., Kim, J.-H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C.-Y., Kim, Y.-K., Lee, Y.-S., and Jeong, D. H. (2007). Antimicrobial Effects of Silver Nanoparticles, Nanomedicine, 3(1), pp. 95-101.   DOI   ScienceOn
47 Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., Mahendra, S., McLaughlin, M. J., and Lead, J. R. (2008). Nanomaterials in the Environment: Behavior, Fate, Bioavailability and Effects, Environmental Toxicology and Chemistry, 27(9), pp. 1825-1851.   DOI   ScienceOn
48 Kyriacou, S., Brownlow, W., and Xu, X.-H. N. (2004). Using Nanoparticle Optics Assay for Direct Observation of Function of Antimicrobial Agents in Single Live Bacterial Cells, Biochemistry, 2004, 43(1), pp. 140-147.   DOI   ScienceOn
49 Laban, G., Nies, L., Turco, R., Bickham, J., and Sepúlveda, M. (2010). The Effects of Silver Nanoparticles on Fathead Minnow (Pimephales promelas) Embryos, Ecotoxicology, 19(1), pp. 185-195.   DOI   ScienceOn
50 Langea, M., Gebauera, W., Markla, J., and Nagel, R. (1995). Comparison of testing acute Toxicity on Embryo of Zebrafish, Brachydanio rerio and RTG-2 Cytotoxicity as Possible Alternatives to the Acute Fish Test, Chemosphere, 30(11), pp. 2087-2102.   DOI   ScienceOn
51 Lansdown, A. B. G. (2006). Silver in Health care: Antimicrobial Effects and Safety in Use, Biofunctional Textiles and the Skin; Current Problems in Dermatology, Hipler U.-E. and Elsner P. (eds.), (33), Karger Publishers, Basel, Switzerland, pp. 17-34.
52 Lee, H. Y., Park, H. K., Lee, W. M., Kim, K., and Park, S. B. (2007b). A Practical Procedure for Producing Silver Nanocoated Fabric and Its Antibacterial Evaluation for Biomedical Applications, Chemical Communications, 28, pp. 2959-2961.
53 Lee, W.-M., Ha, S.-W., Yang, C.-Y., Lee, J.-K., and An, Y.-J. (2011). Effect of Fluorescent Silica Nanoparticles in Embryo and Larva of Oryzias latipes: Sonic Effect in Nanoparticle Dispersion, Chemosphere, 82(3), pp. 451-459.   DOI   ScienceOn
54 Lee, W.-M., and An, Y.-J. (2010). Research Trends of Ecotoxicity of Nanoparticles in Water Environment, Journal of Korean Society on Water Quality, 26(4), pp. 566-573. [Korean Literature]
55 Lee, K. J., Nallathamby, P. D., Browning, L. M., Osgood, C. J., and Xu, X.-H. N. (2007a). In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos, ACS Nano, 1(2), pp. 133-143.   DOI   ScienceOn
56 Li, H., Zhou, Q., Wu, Y., Fu, J., Wang, T., and Jiang, G. (2009). Effects of Waterborne Nano-Iron on Medaka (Oryzias latipes): Antioxidant Enzymatic Activity, Lipid Peroxidation and Histopathology, Ecotoxicology and Environmental Safety, 72(3), pp. 684-692.   DOI   ScienceOn
57 Luft, J. R., Furlani, N. M., NeMoyer, R. E., Penna, E. J., Wolfley, J. R., Snell, M. E., Potter, S. A., and Snell, E. H. (2010). Crystal Cookery - Using High-Throughput Technologies and the Grocery Store as a Teaching Tool, Journal of Applied Crystallography, 43(5-2), pp. 1189-1207.
58 Melquiades, F. L., Ferreira, D. D., Appoloni, C. R., Lopes, F., Lonni, A. G., Oliveira, F. M., and Duarte, J. C. (2008). Titanium Dioxide Determination in Sunscreen by Energy Dispersive X-Ray Fluorescence Methodology, Analytica Chimica Acta, 613(2), pp. 135-143.   DOI   ScienceOn
59 Mueller, N. C. and Nowack, B. (2008). Exposure Modeling of Engineered Nanoparticles in the Environment, Environmental Science & Technology, 42(12), pp. 4447-4453.   DOI   ScienceOn
60 Nam, S.-H. and An, Y.-J. (2012). Research Trend of Aquatic Ecotoxicity of Gold Nanoparticles and Gold Ions, Journal of Korean Society on Water Environment, 28(2), pp. 313-319. [Korean Literature]
61 Scholz, S., Fischer, S., Gündel, U., Küster, E., Luckenbach T. and Voelker, D. (2008). The Zebrafish Embryo Model in Environmental Risk Assessment-Applications beyond Acute Toxicity Testing, Environmental Science and Pollution Research, 15(5), pp. 394-404.   DOI   ScienceOn
62 Ortlieb, M. (2010). White Giant or White Dwarf?: Particle Size Distribution Measurements of $TiO_2,$ G.I.T. Laboratory Journal Europe, 14(9-10), pp. 42-43.
63 Paterson, G., Ataria, J. M., Hoque, M. E., Burns, D. C., and Metcalfe, C. D. (2011). The Toxicity of Titanium Dioxide Nanopowder to Early Life Stages of the Japanese Medaka (Oryzias latipes), Chemosphere, 82(7), pp. 1002-1009.   DOI   ScienceOn
64 Pitkethly, M. J. (2004). Nanomaterials - the Driving Force, Materials Today, 7(12), pp. 20-29.   DOI   ScienceOn
65 Sun, Y. G., Mayers, B., and Xia, Y. N. (2003). Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process, Nano Letters, 3(5), pp. 675-679.   DOI   ScienceOn
66 Sun, Y., and Xia, Y. (2002). Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science, 298(5601), pp. 2176-2179.   DOI   ScienceOn
67 Truong, L., Moody, I., Stankus, D., Nason, J., Lonergan, M., and Tanguay, R. (2011). Differential Stability of Lead Sulfide Nanoparticles Influences Biological Responses in Embryonic Zebrafish, Archives of Toxicology, 85(7), pp. 787-798.   DOI   ScienceOn
68 Truong, L., Saili, K. S., Miller, J. M., Hutchison, J. E., and Tanguay, R. L. (2012). Persistent Adult Zebrafish Behavioral Deficits Results from Acute Embryonic Exposure to Gold Nanoparticles, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 155(2), pp. 269-274.   DOI   ScienceOn
69 Wamer, W. G., Yin, J. J., and Wei, R. R. (1997). Oxidative Damage to Nucleic Acids Photosensitized by Titanium Dioxide, Free Radical Biology and Medicine, 23(6), pp. 851-858.   DOI   ScienceOn
70 Wang, Z. L. (2004) Zinc Oxide Nanostructures: Growth, Properties and Applications, Journal of Physics: Condensed Matter, 16(25), pp. 829-858.   DOI   ScienceOn