• Title/Summary/Keyword: Fish Objects

Search Result 51, Processing Time 0.025 seconds

3D Fish Encyclopedia System based on Mobile Augmented Reality (모바일 증강현실 기반의 3D 어류백과 시스템)

  • Oh, Yeon-Jae;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1005-1010
    • /
    • 2012
  • The Augmented Reality, as a technology caught the spotlight as a next generation's technology of inserting 3D virtual objects in the space of reality seen through the camera, can maximize the learning effects by inducing user's absorption and interest using interaction between user and objects. Recently, as the movile devices having excellent mobility and portability are generalized, the diversified augmented reality are introduced using mobile devices. In this article, a 3D fish encyclopedia system augmented from the mobile environment was designed to provide the user with learning contents focusing on the sense of absorption and an interest. This system is intened to provide helps to learn about the fishes by recognizing the pictures of fishes in the encyclopedia as marker, bringing out the 3D model stored in server and displaying in the mobile environment.

Estimating Distance of a Target Object from the Background Objects with Electric Image (전기장을 이용한 물체의 거리 측정 연구)

  • Sim, Mi-Young;Kim, Dae-Eun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.3
    • /
    • pp.56-62
    • /
    • 2010
  • Weakly electric fish uses active sensing to detect the distortion of self-generated electric field in the underwater environments. The active electrolocation makes it possible to identify target objects from the surroundings without vision in the dark sea. Weakly electric fish have many electroreceptors over the whole body surface of electric fish, and sensor readings from a collection of electroreceptors are represented as an electric image. Many researchers have worked on finding features in the electric image to know how the weakly electric fish identify the target object. In this paper, we suggest a new mechanism of how the electrolocation can recognize a given target object among object plants. This approach is based on the differential components of the electric image, and has a potential to be applied to the underwater robotic system for object localization.

Incorporating Recognition in Catfish Counting Algorithm Using Artificial Neural Network and Geometry

  • Aliyu, Ibrahim;Gana, Kolo Jonathan;Musa, Aibinu Abiodun;Adegboye, Mutiu Adesina;Lim, Chang Gyoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4866-4888
    • /
    • 2020
  • One major and time-consuming task in fish production is obtaining an accurate estimate of the number of fish produced. In most Nigerian farms, fish counting is performed manually. Digital image processing (DIP) is an inexpensive solution, but its accuracy is affected by noise, overlapping fish, and interfering objects. This study developed a catfish recognition and counting algorithm that introduces detection before counting and consists of six steps: image acquisition, pre-processing, segmentation, feature extraction, recognition, and counting. Images were acquired and pre-processed. The segmentation was performed by applying three methods: image binarization using Otsu thresholding, morphological operations using fill hole, dilation, and opening operations, and boundary segmentation using edge detection. The boundary features were extracted using a chain code algorithm and Fourier descriptors (CH-FD), which were used to train an artificial neural network (ANN) to perform the recognition. The new counting approach, based on the geometry of the fish, was applied to determine the number of fish and was found to be suitable for counting fish of any size and handling overlap. The accuracies of the segmentation algorithm, boundary pixel and Fourier descriptors (BD-FD), and the proposed CH-FD method were 90.34%, 96.6%, and 100% respectively. The proposed counting algorithm demonstrated 100% accuracy.

Development of the FishBowl Game Employing a Tabletop Tiled Display Coupling With Mobile Interfaces (모바일 인터페이스와 테이블탑 타일드 디스플레이를 연동한 FishBowl 게임 개발)

  • Kong, Young-Sik;Park, Kyoung-Shin
    • Journal of Korea Game Society
    • /
    • v.10 no.2
    • /
    • pp.57-66
    • /
    • 2010
  • In the prior works on tabletop systems, a projection-based tabletop surface is mostly used to display computer images, and the participants interact with the display surface by hand multi-touching or using some tangible objects. In this research, however, we developed the FishBowl game that employs a scalable tabletop tiled display with infrared camera tracking coupled with PDA mobile interfaces. The focus of this game is to enhance user interactivity and realistic experience by coupling the high-resolution tabletop virtual environment and PDA mobile interface. This paper describes the game design followed by the system design and its detailed implementations. It also discusses the system usability and recommendation for its improvements after interviewing game players and then concludes with future research directions.

Kinematic Access For Generation of Realistic Behavior of Artificial Fish in Virtual Merine World (가상해저공간에서 Artificial Fish의 사실적인 행동 생성을 위한 운동학적 접근)

  • Kim, Chong-Han;Jung, Seung-Moon;Shin, Min-Woo;Kang, Im-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.308-317
    • /
    • 2008
  • The objects real time rendered in the 3D cyber space can interact with each others according to the events which are happened when satisfying some conditions. But to representing the behaviors with these interactions, too many event conditions are considered because each behavior pattern and event must be corresponded in a one-to-one ratio. It leads to problems which increase the system complexity. So, in this paper, we try to physical method based on elasticity force for representing more realistic behaviors of AI fish and apply to the deformable multi-detection sensor, so we suggest the new method which can create the various behavior patterns responding to one evasion event.

Omni-directional Surveillance and Motion Detection using a Fish-Eye Lens (어안 렌즈를 이용한 전방향 감시 및 움직임 검출)

  • Cho, Seog-Bin;Yi, Un-Kun;Baek, Kwang-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.79-84
    • /
    • 2005
  • In this paper, we developed an omni-directional surveillance and motion detection method. The fish-eye lens provides a wide field of view image. Using this image, the equi-distance model for the fish-eye lens is applied to get the perspective and panorama images. Generally, we must consider the trade-off between resolution and field of view of an image from a camera. To enhance the resolution of the result images, some kind of interpolation methods are applied. Also the moving edge method is used to detect moving objects for the object tracking.

Neural network based distortion correction of wide angle lens (신경회로망을 이용한 광각렌즈의 왜곡보정)

  • 정규원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.299-301
    • /
    • 1996
  • Since a standard lens has small sight angle, a fish-eye lens can be used in order to obtain wide sight angle for the robot vision system. In spite of the advantage, the image through the lens has variable resolution; the central information of the lens is of high resolution, but the peripheral information is of low resolution. Owing to this difference of resolution, the variable resolution image should be transformed to a uniform resolution image in order to determine the positions of the objects in the image. In this work, the correction method for the distorted image is presented and the performance is analyzed. Furthermore, the camera with a fish eye lens can be used to determine the real world coordinates. The performance is shown through experiments.

  • PDF

Performance of an Active Stimulating Device Using a Rope Kite or Array in the Cod End to Reduce Juvenile by-catch

  • Kim, Yong-Hae
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.182-189
    • /
    • 2010
  • An active stimulating device (ASD) using a rope apparatus may operated by the flow of turbulence inside a cod end, generating variable stimuli in addition to flow-related effects to minimize the by-catch of juvenile fishes. Preliminary testing involved a hydrodynamic effect inside the cod end with a rotating rope kite or conical rope array to generate variable stimuli (visual stimuli, water flow, or physical contact with fish) to change fish position. The experimental rope kite offered more choice in rotating period and range of sweeping action; adjusting the towing line or flow velocity helped to drive fish toward the net panel and encouraged escape. The conical shape of the rope array in the cod end helped to clear a path for fish by disturbing the rigging and providing more contrast between objects, preventing an optomotor response. This enabled more black porgy to be herded toward the net at an early stage of towing. Therefore, either a conical rope array or a rotating rope kite can be used as an effective ASD to prevent juvenile by-catch.

Image Augmentation of Paralichthys Olivaceus Disease Using SinGAN Deep Learning Model (SinGAN 딥러닝 모델을 이용한 넙치 질병 이미지 증강)

  • Son, Hyun Seung;Choi, Han Suk
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.322-330
    • /
    • 2021
  • In modern aquaculture, mass mortality is a very important issue that determines the success of aquaculture business. If a fish disease is not detected at an early stage in the farm, the disease spreads quickly because the farm is a closed environment. Therefore, early detection of diseases is crucial to prevent mass mortality of fish raised in farms. Recently deep learning-based automatic identification of fish diseases has been widely used, but there are many difficulties in identifying objects due to insufficient images of fish diseases. Therefore, this paper suggests a method to generate a large number of fish disease images by synthesizing normal images and disease images using SinGAN deep learning model in order to to solve the lack of fish disease images. We generate images from the three most frequently occurring Paralichthys Olivaceus diseases such as Scuticociliatida, Vibriosis, and Lymphocytosis and compare them with the original image. In this study, a total of 330 sheets of scutica disease, 110 sheets of vibrioemia, and 110 sheets of limphosis were made by synthesizing 10 disease patterns with 11 normal halibut images, and 1,320 images were produced by quadrupling the images.

Analysis of Fish Activity in Relation to Feeding Events Using Infrared Cameras (적외선 카메라를 활용한 급이 유무에 따른 어류 활동성 분석)

  • Roh, Tae Kyoung;Ha, Sang Hyun;Kim, Ki Hwan;Kang, Young Jin;Jeong, Seok Chan
    • The Journal of Information Systems
    • /
    • v.32 no.4
    • /
    • pp.137-147
    • /
    • 2023
  • Purpose The domestic aquaculture industry in South Korea utilizes both formulated feeds and live feeds for the cultivation of fish. While nutrient-rich live feeds, particularly using fry, have been preferred since the past, formulated feeds are gaining attention due to issues related to overfishing and environmental concerns. Formulated feeds are advantageous for storage and supply but require a sustained feeding regimen due to the comparatively slower growth rate compared to live feeds. As the aging population in rural areas leads to a shortage of labor, automated feeding systems are increasingly being adopted in aquaculture facilities. To enhance the efficiency of such systems, it is crucial to quantitatively analyze the behavioral changes in fish based on the presence or absence of feed. Design/methodology/approach In the study, RGB cameras and infrared cameras were used to analyze fish activity according to feeding, and an outline extraction algorithm was applied to analyze the differences resulting from this. Findings Unlike RGB cameras, infrared cameras are more suitable for analyzing underwater fish activity as they convert objects' thermal energy into images. It was observed that Canny, Sobel, and Prewitt filters showed the most distinct identification of fish activity.