• Title/Summary/Keyword: First-principle calculation

Search Result 74, Processing Time 0.022 seconds

A Study on the mathematical notation of expression in terms of skipping the parenthesis (괄호 생략 관점에서 식의 표기에 관한 고찰)

  • Kim, Chang Su;Kang, Jeong Gi
    • Journal of the Korean School Mathematics Society
    • /
    • v.19 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • This study investigated the mathematical notation used today in terms of skip ping the parenthesis. At first we have studied the elementary and secondary curriculum content related to omitted rules. As a result, it is difficult to find explicit evidence to answer that question 'What is the calculation of the $48{\div}2(9+3)$?'. In order to inquire the notation fundamentally, we checked the characteristics on prefix, infix and postfix, and looked into the advantages and disadvantages on infix. At the same time we illuminated the development of mathematical notation from the point of view of skipping the parenthesis. From this investigation, we could check that this interpretation was smooth in the point of view that skipping the parentheses are the image of the function. Through this we proposed some teaching methods including 'teaching mathematical notation based on historic genetic principle', 'reproduction of efforts to overcome the disadvantages of infix and understand the context to choose infix', 'finding the omitted parentheses to identify the fundamental formula' and 'specifying the viewpoint that skipping the multiplication notation can be considered as an image of the function'.

A study of ways using calculator in elementary mathematics textbook (교과서에서 계산기의 활용 방안)

  • Ahn Byoung Kon;Kim Yong Tae
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.2 no.1
    • /
    • pp.23-40
    • /
    • 1998
  • Recent years have seen an increased demand for calculators as a learning and teaching tool. It is asserted calculators should be utilized as an instructional tool before computers considering their lower price, connivence of easy, and variety of function. Towards this end, it is essential that we persuade teachers and parents who worry that the use of calculators would result in a decrease in students' ability to calculate. Specifically, effort should be made to point out the advantage that calculators have. First of all, calculators could lessen the mental and time pressure attendant upon paper-and-pencil calculation. It have also been reported that calculators are effective in teaching the concept unalgorithmal content, learning of principle, and problem-solving skills, In light of these advantages, this study investigates the kinds of practice items that can be included in the textbooks to help students develop computing skills using calculators.

  • PDF

Concept Optimization for Mechanical Product Using Genetic Algorithm

  • Huang Hong Zhong;Bo Rui Feng;Fan Xiang Feng
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1072-1079
    • /
    • 2005
  • Conceptual design is the first step in the overall process of product design. Its intrinsic uncertainty, imprecision, and lack of information lead to the fact that current conceptual design activities in engineering have not been computerized and very few CAD systems are available to support conceptual design. In most of the current intelligent design systems, approach of principle synthesis, such as morphology matrix, bond graphic, or design catalogues, is usually adopted to deal with the concept generation, in which optional concepts are generally combined and enumerated through function analysis. However, as a large number of concepts are generated, it is difficult to evaluate and optimize these design candidates using regular algorithm. It is necessary to develop a new approach or a tool to solve the concept generation. Generally speaking, concept generation is a problem of concept synthesis. In substance, this process of developing design candidate is a combinatorial optimization process, viz., the process of concept generation can be regarded as a solution for a state-place composed of multi-concepts. In this paper, genetic algorithm is utilized as a feasible tool to solve the problem of combinatorial optimization in concept generation, in which the encoding method of morphology matrix based on function analysis is applied, and a sequence of optimal concepts are generated through the search and iterative process which is controlled by genetic operators, including selection, crossover, mutation, and reproduction in GA. Several crucial problems on GA are discussed in this paper, such as the calculation of fitness value and the criteria for heredity termination, which have a heavy effect on selection of better concepts. The feasibility and intellectualization of the proposed approach are demonstrated with an engineering case. In this work concept generation is implemented using GA, which can facilitate not only generating several better concepts, but also selecting the best concept. Thus optimal concepts can be conveniently developed and design efficiency can be greatly improved.

Calculation of Zero Error and Scale Error of EDM by Precise Baseline Measurement (정밀 기선장 관측에 의한 EDM 장비의 영점오차와 축척오차의 결정)

  • 조재명;윤홍식;이원춘
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.2
    • /
    • pp.137-143
    • /
    • 2004
  • The electronic distance measurement(EDM) instrument, introduced first in the 1950s since those early days has, undergone continual refinement. Rapid advances established in related technologies have made it lighter, smaller and more precise equipment. Understanding for the principle, the standardized observation technique and the precision of EDM instrument is mostly important to improve the quality and the reliability of by-product in the field of engineering and industrial surveying. Periodical and accurate calibration is necessary to maintenance the precision of EDM instrument. This paper describes the calculated example of zero error and scale error as a correction of EDM by applying the least square method to baseline observations in test area. Also here we deal with the testing criteria for precision instrument testing according to different types of EDM instruments.

Blue Luminescent Center in Undoped ZnO Thin Films Grown by Plasma-assisted Molecular Beam Epitaxy (플라즈마 보조 분자선 적층 성장법으로 성장한 ZnO 박막의 청색 발광 중심)

  • Kim, Jong-Bin;No, Young-Soo;Byun, Dong-Jin;Park, Dong-Hee;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.281-287
    • /
    • 2009
  • ZnO thin film was grown on a sapphire single crystal substrate by plasma assisted molecular beam epitaxy. In addition to near band edge (NBE) emissions, both blue and green luminescences are also observed together. The PL intensity of the blue luminescence (BL) range from 2.7 to 2.9 eV increased as the amount of activated oxygen increased, but green luminescence (GL) was weakly observed at about 2.4 eV without much change in intensity. This result is quite unlike previous studies in which BL and GL were regarded as the transition between shallow donor levels such as oxygen vacancy and interstitial zinc. Based on the transition level and formation energy of the ZnO intrinsic defects predicted through the first principle calculation, which employs density functional approximation (DFA) revised by local density approximation (LDA) and the LDA+U approach, the green and blue luminescence are nearly coincident with the transition from the conduction band to zinc vacancies of $V^{2-}_{Zn}$ and $V^-_{Zn}$, respectively.

Strategic design for oxide-based anode materials and the dependence of their electrochemical properties on morphology and architecture

  • Gang, Yong-Muk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.73-73
    • /
    • 2012
  • Modern technology-driven society largely relies on hybrid electric vehicles or electric vehicles for eco-friendly transportation and the use of high technology devices. Lithium rechargeable batteries are the most promising power sources because of its high energy density but still have a challenge. Graphite is the most widely used anode material in the field of lithium rechargeable batteries due to its many advantages such as good cyclic performances, and high charge/discharge efficiency in the initial cycle. However, it has an important safety issue associated with the dendritic lithium growth on the anode surface at high charging current because the conventional graphite approaches almost 0 V vs $Li/Li^+$ at the end of lithium insertion. Therefore, a fundamental solution is to use an electrochemical redox couple with higher equilibrium potentials, which suppresses lithium metal formation on the anode surface. Among the candidates, $Li_4Ti_5O_{12}$ is a very interesting intercalation compound with safe operation, high rate capability, no volume change, and excellent cycleability. But the insulating character of $Li_4Ti_5O_{12}$ has raised concerns about its electrochemical performance. The initial insulating character associated with Ti4+ in $Li_4Ti_5O_{12}$ limits the electronic transfer between particles and to the external circuit, thereby worsening its high rate performance. In order to overcome these weak points, several alternative synthetic methods are highly required. Hence, in this presentation, novel ways using a synergetic strategy based on 1D architecture and surface coating will be introduced to enhance the kinetic property of Ti-based electrode. In addition, first-principle calculation will prove its significance to design Ti-based electrode for the most optimized electrochemical performance.

  • PDF

Newly Developed BioDegradable Mg Alloys and Its Biomedical Applications

  • Seok, Hyeon-Gwang;Kim, Yu-Chan;Yang, Gui Fu;Cha, Pil-Ryeong;Jo, Seong-Yun;Yang, Seok-Jo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.55.2-55.2
    • /
    • 2012
  • Intensive theoretical and experimental studies have been carried out at Korean Institute of Science and Technology (KIST) on controlling the bio absorbing rate of the Mg alloys with high mechanical strength through tailoring of electrochemical potential. Key technology for retarding the corrosion of the Mg alloys is to equalize the corrosion potentials of the constituent phases in the alloys, which prevented the formation of Galvanic circuit between the constituent phases resulting in remarkable reduction of corrosion rate. By thermodynamic consideration, the possible phases of a given alloy system were identified and their work functions, which are related to their corrosion potentials, were calculated by the first principle calculation. The designed alloys, of which the constituent phases have similar work function, were fabricated by clean melting and extrusion system. The newly developed Mg alloys named as KISTUI-MG showed much lower corrosion rate as well as higher strength than previously developed Mg alloys. Biocompatibility and feasibility of the Mg alloys as orthopedic implant materials were evaluated by in vitro cell viability test, in vitro degradation test of mechanical strength during bio-corrosion, in vivo implantation and continuous observation of the implant during in vivo absorbing procedures. Moreover, the cells attached on the Mg alloys was observed using cryo-FIB (focused ion beam) system without the distortion of cell morphology and its organ through the removal of drying steps essential for the preparation of normal SEM/TEM samples. Our Mg alloys showed excellent biocompatibility satisfying the regulations required for biomedical application without evident hydrogen evolution when it implanted into the muscle, inter spine disk, as well as condyle bone of rat and well contact interface with bone tissue when it was implanted into rat condyle.

  • PDF

Effects of Cu and Ag Addition on Nanocluster Formation Behavior in Al-Mg-Si Alloys

  • Kim, Jae-Hwang;Tezuka, Hiroyasu;Kobayashi, Equo;Sato, Tatsuo
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.329-334
    • /
    • 2012
  • Two types of nanoclusters, termed Cluster (1) and Cluster (2) here, both play an important role in the age-hardening behavior in Al-Mg-Si alloys. Small amounts of additions of Cu and Ag affect the formation of nanoclusters. Two exothermic peaks were clearly detected in differential scanning calorimetry(DSC) curves by means of peak separation by the Gaussian method in the base, Cu-added, Ag-added and Cu-Ag-added Al-Mg-Si alloys. The formation of nanoclusters in the initial stage of natural aging was suppressed in the Ag-added and Cu-Ag-added alloys, while the formation of nanoclusters was enhanced at an aging time longer than 259.2 ks(3 days) of natural aging with the addition Cu and Ag. The formation of nanoclusters while aging at $100^{\circ}C$ was accelerated in the Cu-added, Ag-added and Cu-Ag-added alloys due to the attractive interaction between the Cu and Ag atoms and the Mg atoms. The influence of additions of Cu and Ag on the clustering behavior during low-temperature aging was well characterized based on the interaction energies among solute atoms and on vacancies derived from the first-principle calculation of the full-potential Korrinaga-Kohn-Rostoker(FPKKR)-Green function method. The effects of low Cu and Ag additions on the formation of nanoclusters were also discussed based on the age-hardening phenomena.

Calculation models and stability of composite foundation treated with compaction piles

  • Cheng, Xuansheng;Jing, Wei
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.929-946
    • /
    • 2017
  • Composite foundation treated with compaction piles can eliminate collapsibility and improve the bearing capacity of foundation in loess area. However, the large number of piles in the composite foundation leads to difficulties in the analysis of such type of engineering works. This paper proposes two simplified methods to quantify the stability of composite foundation treated with a large number of compaction piles. The first method is based on the principle of making the area replacement ratios of the simplified model as the same time as the practical engineering situation. Then, discrete piles arranged in a triangular shape can be simplified in the model where the annular piles and compacted soil are arranged alternately. The second method implements equivalent continuous treatment in the pile-soil area and makes the whole treated region equivalent to a type of composite material. Both methods have been verified using treated foundation of an oil storage tank. The results have shown that the differences in the settlement values obtained from the water filled test in the field and those calculated by the two simplified methods are negligible. Using stability analysis, the difference ratios of the static and dynamic safety factors of the composite foundation treated with compaction piles calculated by these two simplified methods are found to be 3.56% and 5.32%, respectively. At the same time, both static and dynamic safety factors are larger than the general safety factor, which should be greater than or equal to 2.0 according to the provisions in civil engineering. This indicates that after being treated with compaction piles, the bearing capacity of the composite foundation is effectively improved and the foundation has enough safety reserve.

Real-space TB-LMTO-recursion Electronic Structure Calculations for Ferromagnetic Fe, Co, and Ni (실공간 TB-LMTO-recursion 전자구조 방법에 의한 자성연구 : Fe, Co, Ni)

  • 박진호;조화석;윤석주;민병일
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.846-853
    • /
    • 1995
  • In order to study electronic structures for locally disordered systems, we have developed a first-principle self-con-sistent-spin-polarized real space band method (TB-LMTO-R), which combines the tight-binding(TB) linear-muffin-tin orbital(LMTO) band rrethod and the recursion(R) rrethod. The TB-LMTO-R rrethod has been applied to fer-romagnetic bec Fe, hcp Co, and fcc Ni. With varying cluster sizes, recursion coefficients, and the order of the TB-Hamiltonian, we have calculated the local density of states(LDOS) and magnetic moments. It is found that the calculation with 5,000 atoms cluster, 40 continued fractions, and the second-order TB-Hamiltonian yields a conver¬gent result in agreement with those from the conventional LMTO. In this way, we have demonstrated a physical transparency of the TB-LMTO-R method as a real space description.

  • PDF