• Title/Summary/Keyword: First Order Motion

Search Result 569, Processing Time 0.024 seconds

계수려진을 받는 단순지지 보의 비선형 진동특성 (Nonlinear Analysis of Simply supported Elastic Beams under Parametric Excitation)

  • 손인수;;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.712-715
    • /
    • 2006
  • This paper presents the nonlinear characteristics of the parametric resonance of a simply supported beam which is inextensible beam. For the beam model, the order-three expanded equation of motion has been determined in a form amenable to a perturbation treatment. The equation of motion is derived by a special Cosserat theory. The method of multiple scales is used to determine the equations that describe to the first-order modulation of the amplitude of simply supported beam. The stability and the bifurcation points of the system are investigated applying the frequency response function.

  • PDF

불규칙파 중에서 돌핀 계류된 해상공항에 대한 운동 해석 (Motion Analyses for a Very Large Floating Structure with Dolphin Mooring Systems in Irregular Waves)

  • 이호영;신현경;임춘규;강점문;윤명철
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.57-62
    • /
    • 2000
  • The very large flcating structure which am be used for as airport may be as large as several kilomet wide. The first order wave forces as well as wave drift forces are very important forces on such a very large floating In the present studv, the time simulation of motion responses with dolphin-moored VLFS in waves is presented The coeffcients and wave forces involved in the equations are obtained from a three-dimensionul panel method in the frequc The horizontal drift forces and mooring forces for dolphin systems are taken into account. As for numerical example, analyses are carried out for a VLFS in irregular wave condition

  • PDF

Motion estimation using regions

  • Sull, Sanghoon
    • 한국통신학회논문지
    • /
    • 제23권9A호
    • /
    • pp.2333-2344
    • /
    • 1998
  • We present a two step approach for estimating the motionand sturcture parameters from region orrespondences in two frames. Given four or more region corresondences on the same planar surface, the motion and planar orientation parameters are first linearly estimated based on second-order approximation of the displacement field of the image plane. Then, using this linear estimate as an initial guess, a nonlinear estimate is obtained by iteratively minimizing an objective function using the exact experession of the displacement field. The objective function involves the centroids of corresponding regions and relationships among low-order moments. Through simulations, we show that the two-step region-based approach gives robust estimates. The performance of nonlinear region-based estimation is compared with that of linear region-based and point-based methods. Experimental results for two image pairs, on esynthetic and one real, ar epresented to show the practical applicability of our approach.

  • PDF

Dynamic instability region analysis of reinforced-CNTs truncated conical shells using mixed DQ-Bolotin method

  • H. Vossough;F. Ahmadi;S. Golabi
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.129-136
    • /
    • 2023
  • In this paper, dynamic buckling of truncated conical shell made of carbon nanotubes (CNTs) composite is studied. In aerospace industries, this category of structures is utilized extensively due to wide range of engineering applications. To calculate the effective material properties of the nanocomposite, The Mori-Tanaka model is applied. Also, the motion equations are derived with the assistance of the first order shear deformation theory (FSDT), Hamilton's principle and energy method. Besides, In order to solve motion equations and analyze dynamic instability region (DIR) of the structure, mixed model of differential quadrature method (DQM) and Bolotin's method is used. Moreover, investigation of the different parameters effects such as geometrical parameters and volume fraction of CNTs on the analysis of the DIR of the structure is done. In accordance with the obtained results, the DIR will occur at higher frequencies by increasing the volume fraction of CNTs.

Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline

  • Bozyigit, Baran;Yesilce, Yusuf;Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.65-77
    • /
    • 2017
  • The free vibration analysis of fluid conveying Timoshenko pipeline with different boundary conditions using Differential Transform Method (DTM) and Adomian Decomposition Method (ADM) has not been investigated by any of the studies in open literature so far. Natural frequencies, modes and critical fluid velocity of the pipelines on different supports are analyzed based on Timoshenko model by using DTM and ADM in this study. At first, the governing differential equations of motion of fluid conveying Timoshenko pipeline in free vibration are derived. Parameter for the nondimensionalized multiplication factor for the fluid velocity is incorporated into the equations of motion in order to investigate its effects on the natural frequencies. For solution, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Timoshenko beam theory. After the analytical solution, the efficient and easy mathematical techniques called DTM and ADM are used to solve the governing differential equations of the motion, respectively. The calculated natural frequencies of fluid conveying Timoshenko pipelines with various combinations of boundary conditions using DTM and ADM are tabulated in several tables and figures and are compared with the results of Analytical Method (ANM) where a very good agreement is observed. Finally, the critical fluid velocities are calculated for different boundary conditions and the first five mode shapes are presented in graphs.

Nonlinear vibration analysis of FG porous shear deformable cylindrical shells covered by CNTs-reinforced nanocomposite layers considering neutral surface exact position

  • Zhihui Liu;Kejun Zhu;Xue Wen;Abhinav Kumar
    • Advances in nano research
    • /
    • 제17권1호
    • /
    • pp.61-73
    • /
    • 2024
  • This paper presents nonlinear vibration analysis of a composite cylindrical shell. The core of the shell is made of functionally graded (FG) porous materials and layers is fabricated of carbon nanotubes (CNTs) reinforced nanocomposites. To increase the accuracy of results, neutral surface position is considered. First-order shear deformation theory is used as displacement field to derive the basic relations of equation motions. In addition, von-Karman nonlinear strains are employed to account geometric nonlinearity and to enhance the results' precision, the exact position of the neutral surface is considered. To governing the partial equations of motion, the Hamilton's principle is used. To reduce the equation motions into a nonlinear motion equation, the Galerkin's approach is employed. After that the nonlinear motion equation is solved by multiple scales method. Effect of various parameters such as volume fraction and distribution of CNTs along the thickness directions, different patterns and efficiency coefficients of porous materials, geometric characteristics and initial conditions on nonlinear to linear ratio of frequency is investigated.

Wave dispersion characteristics of porous graphene platelet-reinforced composite shells

  • Ebrahimi, Farzad;Seyfi, Ali;Dabbagh, Ali;Tornabene, Francesco
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.99-107
    • /
    • 2019
  • Wave propagation analysis of a porous graphene platelet reinforced (GPLR) nanocomposite shell is investigated for the first time. The homogenization of the utilized material is procured by extending the Halpin-Tsai relations for the porous nanocomposite. Both symmetric and asymmetric porosity distributions are regarded in this analysis. The equations of the shell's motion are derived according to Hamilton's principle coupled with the kinematic relations of the first-order shear deformation theory of the shells. The obtained governing equations are considered to be solved via an analytical solution which includes two longitudinal and circumferential wave numbers. The accuracy of the presented formulations is examined by comparing the results of this method with those reported by former authors. The simulations reveal a stiffness decrease in the cases which porosity influences are regarded. Also, one must pay attention to the effects of longitudinal wave number on the wave dispersion curves of the nanocomposite structure.

Backstepping and Partial Asymptotic Stabilization: Applications to Partial Attitude Control

  • Jammazi, Chaker
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.859-872
    • /
    • 2008
  • In this paper, the problem of partial asymptotic stabilization of nonlinear control cascaded systems with integrators is considered. Unfortunately, many controllable control systems present an anomaly, which is the non complete stabilization via continuous pure-state feedback. This is due to Brockett necessary condition. In order to cope with this difficulty we propose in this work the partial asymptotic stabilization. For a given motion of a dynamical system, say x(t,$x_0,t_0$)=(y(t,$y_0,t_0$),z(t,$z_0,t_0$)), the partial stabilization is the qualitative behavior of the y-component of the motion(i.e., the asymptotic stabilization of the motion with respect to y) and the z-component converges, relative to the initial vector x($t_0$)=$x_0$=($y_0,z_0$). In this work we present new results for the adding integrators for partial asymptotic stabilization. Two applications are given to illustrate our theoretical result. The first problem treated is the partial attitude control of the rigid spacecraft with two controls. The second problem treated is the partial orientation of the underactuated ship.

Optimal motion control for robot manipulators

  • Shin, Jin-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.179-184
    • /
    • 1993
  • In this paper, an optimal motion control scheme is proposed for robot manipulators. A simple explicit solution to the Hamilton-Jacobi equation is presented. The optimization of motion control is based on the mininization of the torque term affecting the kinetic energy and the augmented error which has the first-order stable dynamics for the position and velocity tracking error. In the presence of parametric uncertainty, an adaptive control scheme using the optimal principle is proposed. The global stability of the closed-loop system is guaranteed by the Lyapunov stability approach, The effectiveness and feasibility of the proposed control schemes are shown by simulation results.

  • PDF

수화 애니메이션을 위한 중간 프레임 생성 방법 (A Method for Generating Inbetween Frames in Sign Language Animation)

  • 오정근;김상철
    • 한국정보처리학회논문지
    • /
    • 제7권5호
    • /
    • pp.1317-1329
    • /
    • 2000
  • The advanced techniques for video processing and computer graphics enables a sign language education system to appear. the system is capable of showing a sign language motion for an arbitrary sentence using the captured video clips of sign language words. In this paper, a method is suggested which generates the frames between the last frame of a word and the first frame of its following word in order to animate hand motion. In our method, we find hand locations and angles which are required for in between frame generation, capture and store the hand images at those locations and angles. The inbetween frames generation is simply a task of finding a sequence of hand angles and locations. Our method is computationally simple and requires a relatively small amount of disk space. However, our experiments show that inbetween frames for the presentation at about 15fps (frame per second) are achieved so tat the smooth animation of hand motion is possible. Our method improves on previous works in which computation cost is relativey high or unnecessary images are generated.

  • PDF