• Title/Summary/Keyword: Firing Vehicle

Search Result 75, Processing Time 0.027 seconds

Torsional Vibration Isolation Performance Evaluation of Centrifugal Pendulum Absorbers for Clutch Dampers (클러치 댐퍼용 원심 진자 흡진기의 비틀림 진동 절연 성능 평가)

  • Song, Seong-Young;Shin, Soon-Cheol;Kim, Gi-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.436-442
    • /
    • 2016
  • This paper presents the torsional vibration isolation performance evaluation of a centrifugal pendulum absorbers (CPAs) that has a continuously varying resonance frequencies proportional to engine firing (excitation) order. CPAs are commonly used to suppress torsional vibrations in rotating machinery and internal combustion engines. In this study, they are employed on the current spring type torsional damper inside a torque converter of automotive vehicle. To evaluate the effectiveness of designed resonance tuning order, the torsional vibration transmissibility based on torque measurements with respect to different engine firing orders is experimentally measured with a lower-inertia dynamometer. The torsional vibration transmissibility with respect to different frequencies with engine order of 2 is also evaluated. It has been demonstrated that the significant vibration reduction over operational frequency range of interest can be achieved by attaching simple pendulums. Future research direction includes the study on theoretical analysis, improved design of pendulum etc.

A Study on the Ignition Characteristics of Liquid Rocket Engine Thrust Chamber with Regenerative Cooling (액체로켓엔진 재생냉각 연소기의 점화 특성 연구)

  • Lee, Kwang-Jin;Han, Yeoung-Min;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.73-78
    • /
    • 2012
  • The ignition characteristics of liquid rocket engine thrust chambers which have been developed by domestic technology were analyzed through hot-firing tests. Thrust chambers used in hot-firing tests have different characteristics in terms of the injector for ignition, film cooling method and the position of the oxidizer inlet. Also, these thrust chambers used their respective startup sequences. Analysis results showed that according to temperature profiles of the oxidizer manifold, low frequency fluctuation was appeared in ignition area. This low frequency fluctuation didn't give rise to violent malfunction of the thrust chamber, but the continuous observation as a concern parameter in the side of interfaces with engine system and launch vehicle should be demanded.

Performance Prediction of Combustion Chamber for 75 ton LRE through Firing Tests at Low Pressure (75톤급 액체로켓엔진 연소기 저압시험을 통한 연소성능 예측)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.66-70
    • /
    • 2010
  • The performance of 75 ton liquid rocket engine combustion chamber for a space launch vehicle was predicted through firing tests at low pressure. In low pressure tests of 75 ton LRE combustor chamber, the combustion characteristic velocity of 1750 m/sec and the specific impulse of 240 sec were obtained which are higher than the low pressure performance of 30ton combustion chamber. The combustion characteristic velocity of 1770 m/sec and the specific impulse of 278 sec at design point for 75 ton LRE combustion chamber were predicted by using the low/high pressure performance correlation of 30ton LRE combustion chamber.

  • PDF

Effects of Characteristic Length Variation for Thrust Chamber on the Hot-fire Performance of Hydrazine Thruster (하이드라진 추력기의 추력실 특성길이 변화가 연소성능에 미치는 영향)

  • Kim, Jong Hyun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.144-149
    • /
    • 2014
  • A ground firing test for hot-fire performance evaluation according to the characteristic length($L^*$) variation of thrust chamber was carried out for the hydrazine thruster which may be employed in space launch vehicles. A scrutiny into the performance characteristics of each thruster is made in terms of thrust, specific impulse, response characteristics, and characteristic velocity at steady-state firing mode with propellant inlet pressure of 2.41 MPa (350 psia). Through the test results, it has been verified that performance of characteristic velocity and specific impulse degrades as the characteristic length deviates from that of the standard model. Thus, it is confirmed that the thrust chamber configuration of standard model was suitably designed for the requirement specified.

Construction and Start-up Test of Hot-firing Test Facility for KSLV-II Combustion Chamber (한국형발사체 연소기 연소시험설비의 구축 및 시운전)

  • Lee, Kwang-Jin;Yi, Seung Jae;Seo, Daeban;Hwang, Chang Hwan;Woo, Seongphil;Im, Ji-Hyuk;Jeon, Junsu;So, Younseok;Kim, Chae-Hyoung;Kim, Sunghyuk;Kim, Seung-Han;Cho, Namkyung;Han, Yeoung Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • This paper covers the result of construction and start-up tests of the KSLV(Korea Space Launch Vehicle)-II combustion chamber hot-firing test facility. This facility was constructed from 2012 to 2014. Start-up test of this facility began in the second half of 2014. Oxidizer cold flow test, fuel cold flow test and cooling water cold flow test were carried out as start-up test. Afterward, ignition test of combustion chamber was accomplished. The result of ignition test is applied to set up start-up sequence of KSLV-II combustion chamber and utilized as base line data for hot-firing test of low and normal design point.

Design and Analysis of Static Firing Test for KM Subscale Motor (KM 축소형 추진기관에 대한 설계 및 시험결과분석)

  • Kwon Taehoon;Lee Wonbok;Hwang Jongsun;Cho Inhyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.16-19
    • /
    • 2005
  • The basic research on KM(Kick Motor) for space launch vehicle was carried out. KM whick will be used as 2nd stage solid rocket motor. in Korean Satellite Launch Vehicle(I) has been developing. KM is a solid rocket motor using composite propellant based on HTPB and is composed of composite motor case and submerged nozzle. To develop KM rocket motor satisfing a given set of requirement, firstly the full-scale KM was designed, then sub-scale motor reduced about $50\%$ were manufactured and tested.

  • PDF

Vibration and Shock Measurement of KSLV-I Kick Motor on the Ground Test (KSLV-I 킥 모터 지상연소시험에서의 진동 및 충격 계측)

  • Oh, Jun-Seok;Kim, Jeong-Yong;Roh, Woong-Rae;Eun, Hee-Kwang;Im, Jong-Min;Moon, Sang-Mu
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.98-104
    • /
    • 2009
  • A solid kick motor is used for propulsion system of KSLV-I 2nd stage. During combustion of the kick motor, vibration and shock could be generated. And it could be transferred to the vehicle equipment bay through the kick motor body. If vibration and shock transferred to the vehicle equipment bay are considerable, electrical equipments could be disordered. Therefore we need to verify influence of vibration and shock caused by combustion of the kick motor. In this research, we measured vibration of the kick motor on the ground firing test. Based on this measurement data, we analyzed random vibration and shock response spectrum.

  • PDF

Shock Response Prediction of a Low Altitude Earth Observation Satellite During Launch Vehicle Separation

  • Lee, Dae-Oen;Han, Jae-Hung;Jang, Hae-Won;Woo, Sung-Hyun;Kim, Kyung-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2010
  • Several pyrotechnic devices are employed over the course of satellite's missions, generally for the separation of structural subsystems and deployment of appendages. Firing of pyrotechnic devices results in impulsive loads characterized by high peak acceleration and high frequency content which can cause failures of various flight hardware elements and small components. Thus, accurate prediction of acceleration level in various components of spacecraft due to pyrotechnic devices is important. In this paper, two methods for pyroshock prediction, an empirical model and statistical energy analysis in conjunction with virtual mode synthesis, are applied to predict shock response of a low altitude earth observation satellite during launch vehicle separation. The predicted results are then evaluated through comparison with the shock test results.

Analysis of the Theoretical Performance Characteristics for Methane-fuel Bipropellant Rocket Engine (메탄을 연료로 하는 이원추진제 로켓엔진의 이론성능특성 분석)

  • Kim, Jong Hyun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2014
  • A set of preliminary design parameters for the bipropellant rocket engine using liquid methane-fuel as green propellant were derived through a theoretical performance analysis. Chemical equilibrium analysis utilizing CEA was conducted for the prediction of combustion performance: combustion characteristics according to the O/F ratio and chamber pressure variation were investigated. For a determination of chamber-characteristic length, the vaporization time of fuel-droplet with various performance parameters was calculated by applying Spalding's 1-D droplet vaporization model. Finally, the preliminary design specification of methane-bipropellant rocket engine, which is to be performance-tested under the ground firing condition, was proposed.

차실 내부소음의 특성과 저감에 관한 실험적 고찰(상)

  • 정주화
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.15-20
    • /
    • 1983
  • The nature and the sources of sound in cars is discussed in the light of many previous works, and the importance of the system resonances inside cars is suggested. An investigation of a 'boom' problem in a small size passenger car is described. It was established that the 'boom' frequencies coincided with engine firing frequency and also with several system resonances. To find out main transmission path of the noise to the car interior, various possible sources were eliminated from the investigation by means of simple modification to the vehicle. Data on the structural modes of the body, and the acoustic modes of the passenger compartment at various forcing cases were obtained to provide better understanding of the problem. It was found that the acoustic resonance responsible for the boom was controlled largely the bending motion of the floor. To investigate the effect of the structural modification to the acoustic response, center floor of the car was reinforced. a great reduction of the noise inside the car especially at the offending speed range, was achieved by this modification.

  • PDF