• Title/Summary/Keyword: Firing Test

Search Result 462, Processing Time 0.017 seconds

A Study on Shear Bond Strength of Core-veneer Interface for Bilayered all Ceramics (Bilayered all Ceramics에서 Core와 Veneer 계면의 전단결합강도에 관한 연구)

  • Jung, Yong-Su;Lee, Jin-Han;Lee, Jae-In;Dong, Jin-Keun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.3
    • /
    • pp.231-242
    • /
    • 2008
  • Purpose: The purpose of this study was to investigate the bond strength of the core-veneer interface in all ceramic systems. Material and Methods: The all ceramic systems tested with their respective veneer were IPS Empress 2 with IPS Eris, IPS e.max Press with IPS e.max Ceram and IPS-e.max ZirCAD with IPS e.max Ceram. Cores (N=36, N=12/group, diameter: 10mm, thickness: 3mm) were fabricated according to the manufacturer's instruction and cleaned with ultrasonic cleaner. The veneer(diameter: 3mm, thickness: 2mm) were condensed in stainless steel mold and fired on to the core materials. After firing, they were again ultrasonically cleaned and embedded in acrylic resin. The specimens were stored in distilled water at $37^{\circ}C$ for 1 week. The specimens were placed in a mounting jig and subjected to shear force in a universal testing machine(Z020, Zwick, Germany). Load was applied at close to the core-veneer interface as possible with crosshead speed of 1.00mm/min until failure. Average shear bond strengths(MPa) were analyzed with a one-way analysis of variance and the Tukey test(${\alpha}=.05$). The failed specimens were examinated by scanning electron microscopy(JSM-6360, JEOL, Japan). The pattern of failure was classified as cohesive in core, cohesive in veneer, mixed or adhesive. Results: The mean shear bond strength($MPa{\pm}SD$) were IPS e.max Press $32.85{\pm}6.75MPa$, IPS Empress 2 $29.30{\pm}6.51MPa$, IPS e.max ZirCAD $28.10{\pm}4.28MPa$. IPS Empress 2, IPS e.max Press, IPS e.max ZirCAD were not significantly different from each others. Scanning electron microscopy examination revealed that adhesive failure did not occur in any all ceramic systems. IPS Empress 2 and IPS e.max Press exhibited cohesive failure in both the core and the veneer. IPS e.max ZirCAD exhibited cohesive failure in veneer and mixed failure.

Inactivation of Asbestos-Containing Slate Using High-Temperature Plasma Reactor (플라즈마 고온반응기를 이용한 폐슬레이트 비활성화 연구)

  • Yoon, Sungjun;Jeong, Hyeonyi;Park, Byungno;Kim, Yongun;Kim, Hyesu;Park, Jaebong;Son, Byungkoo;Kim, Taewook;Mun, Youngbum;Lee, Sundong;Lee, Jaeyun;Roh, Yul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.407-417
    • /
    • 2020
  • The capacity of the designated landfill site for asbestos-containing waste is approaching its limit because the amount of asbestos-containing slate is increasing every year. There is a need for a method that can safely and inexpensively treat asbestos-containing slate in large capacity and at the same time recycle it. A cement kiln can be an alternative for heat treatment of asbestos-containing slate. We intend to develop a pilot scale device that can simulate the high temperature environment of a cement kiln using a high temperature plasma reactor in this study. In addition, this reactor can be used to inactivate asbestos in the slate and to synthesize one of the minerals of cement, to confirm the possibility of recycling as a cement raw material. The high-temperature plasma reactor as a pilot scale experimental apparatus was manufactured by downsizing to 1/50 the size of an actual cement kiln. The experimental conditions for the deactivation test of the asbestos-containing slate are the same as the firing time of the cement kiln, increasing the temperature to 200-2,000℃ at 100℃ intervals for 20 minutes. XRD, PLM, and TEM-EDS analyses were used to characterize mineralogical characteristics of the slate before and after treatment. It was confirmed that chrysotile [Mg3Si2O5(OH)4] and calcite (CaCO3) in the slate was transformed into forsterite (Mg2SiO4) and calcium silicate (Ca2SiO4), a cement constituent mineral, at 1,500℃ or higher. Therefore, this study may be suggested the economically and safely inactivating large capacity asbestos-containing slate using a cement kiln and the inactivated slate via heat treatment can be recycled as a cement raw material.