• Title/Summary/Keyword: Firepower system

Search Result 19, Processing Time 0.024 seconds

Model-Driven Design Framework for Future Combat Vehicle Development based on Firepower and Mobility: (2) Integrated Design Optimization (화력과 기동의 통합성능을 고려한 미래 전투차량의 해석 기반 설계 프레임웍 연구: (2) 통합최적설계)

  • Lim, Woochul;Lim, Sunghoon;Kim, Shinyu;Min, Seungjae;Lee, Tae Hee;Ryoo, Jae Bong;Pyun, Jai-Jeong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.324-331
    • /
    • 2014
  • In the design of a combat vehicle, various performances such as firepower, mobility and survivability, etc., should be considered. Furthermore, since these performances relate to each other, design framework which can treat an integrated system should be employed to design the combat vehicle. In this paper, we use empirical interior ballistic and 3D combat vehicle analyses for predicting firepower and mobility performances which are developed in previous study (1) integrated performance modeling. In firepower performance, pitch and roll angle by sequential firing are considered. In mobility performance, vertical acceleration after passing through a bump is regarded. However, since there are many design variables such as mass of vehicle, mass of suspension, spring and damping coefficient of suspension and tire, geometric variables of vehicle, etc., for firepower and mobility performance, we utilize analysis of variance and quality function deployment to reduce the number of design variables. Finally, integrated design optimization is carried out for integrated performance such as firepower and mobility.

The Development of Electromagnetic pulse Protection Capability in the Main System of a Tank Battalion (전차대대 주요체계의 EMP 방호능력 발전방안에 관한 연구)

  • Choi, Hokab;Han, Jaeduk;Son, Sangwoo;Kim, Sungkon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.623-631
    • /
    • 2020
  • An electromagnetic pulse (EMP) attack on a nuclear weapon or the airlift of an electronic bomb affects weapons systems, information devices, wired and wireless communication equipment, and power supply equipment. It can lead to confusion on the battlefield. The current standards for EMP protection when applied to the military are centered on fixed and mobile facilities and equipment. It is, however, important to study EMP protection for a single tactical unit centered on the weapon system. In this study, EMP protection standards were established for command and control, maneuvering and firepower systems vulnerable to EMPs, focusing on battle tanks with mobility, firepower, and shock force. Also, specific development plans for EMP protection capabilities are proposed, including the shielding and blocking of EMPs. Through the study, the Korean government intends to ensure a unit's command and control under an EMP attack as well as preserve the viability of a unit's personnel and guarantee the conditions for the execution of a mission.

Model-Driven Design Framework for Future Combat Vehicle Development based on Firepower and Mobility: (1) Integrated Performance Modeling (화력과 기동의 통합성능을 고려한 미래 전투차량의 해석 기반 설계 프레임웍 연구: (1) 통합성능분석 모델개발)

  • Lim, Sunghoon;Lim, Woochul;Min, Seungjae;Lee, Tae Hee;Ryoo, Jae Bong;Pyun, Jai-Jeong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.316-323
    • /
    • 2014
  • This paper proposes the 3D modeling and simulation technique for predicting the integrated performance of combat vehicle. To consider the practical driving and firing condition of a combat vehicle, the full vehicle model, which can define the six degrees-of-freedom of vehicle motion and various firing angles, is developed. The critical design parameters such as the stiffness and damping coefficient of suspension system are applied to construct the analysis model of vehicle. A simple ballistic model, which incorporates the empirical interior ballistic model and the point mass trajectory model, is built to estimate the firing range and the firing recoil force. To predict the integrated performance and analyze the effect of system parameters, MATLAB/SIM-ULINK model of a combat vehicle for performing the real time simulation is also developed. Several simulation tests incorporating the road bump and the firing recoil force are presented to confirm the effectiveness of the proposed vehicle model.

A Study on the Reduction Technique of Recoil Force for Soft Recoil System using Dynamic Behavior (동적 거동을 이용한 연식주퇴장치의 주퇴력 저감 기법 연구)

  • Yoo, Sam-Hyeon;Lee, Jae-Yeong;Lee, Jong-Woo;Jo, Seong-Sik;Kim, Ju-Hee;Kim, In-Su;Lim, Soo-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.5-11
    • /
    • 2007
  • The future combat system is likely to be studied and developed in terms of enhancing both firepower and mobility simultaneously. Increased firepower often necessitates a heavier firing system. In return, the body of the vehicle needs to be light-weight in order to improve the mobility of the whole system. For this reason, in the areas of weapons systems such as the tank and self-propelled artillery, a number of studies attempting to develop designs that reduce recoil force against the body of the vehicle are being conducted. The current study proposes a tank construction that has a mass-spring-damper system with two degrees of freedom. A tank structure mounted with a specific soft recoil system that was implemented using a soft recoil technique and another tank structure based on a general recoil technique were compared to each other in order to analyze the recoil forces, the displacements of recoil, and the firing intervals when they were firing. MATLAB-Simulink was used as a simulating tool. In addition, the relationship between the movement of the recoil parts and the positions of the recoil latches in each of the two structures were analyzed. The recoil impact power, recoil displacement, firing interval, and so on were derived as functional formulas based on the position of the recoil latch.

A Basic Study on the Selection of Required Operational Capability for Attack Drones of Army TIGER Units Using AHP Technique (AHP 기법을 이용한 Army TIGER 부대 공격용 드론의 작전요구성능 선정에 관한 기초 연구)

  • Jinho Lee;Seongjin Kwon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.197-204
    • /
    • 2023
  • The importance of each warfighting function for Army TIGER unit attack drones is measured using the AHP technique. As a result, the importance of attack drones is high in the order of maneuver, firepower, intelligence, command/control, protection, and operation sustainment, but the importance of maneuver, firepower, and intelligence are almost similar. In addition, it is analyzed that attack drones capable of carrying out day and night missions by being equipped with an EO/IR sensor and being commanded/controlled in conjunction with the C4I system to eliminate threats with small bombs or aircraft collisions is needed. Finally, based on the results of this study, a virtual battle scenario for attack drones is proposed.

A study on the Vibration Damping of a gun barrel using Dynamically Tuned Shroud (차열관을 이용한 포신의 진동 감쇠에 대한 연구)

  • Koh, Jae-Min;Kim, Kyeon-Sik;Kim, Jin-Woo;Jung, Hyun-Woo;Hwang, Jai-Hyuk;Bae, Jai-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.4
    • /
    • pp.28-36
    • /
    • 2010
  • Current tanks have been developed to increase mobility and firepower, and its maximum range and destructive power are improved. This great change causes remained vibration of a gun barrel after firing. For this reason, people are trying to control vibration of gun barrel effectively. This thesis presents a modeling method and analysis results for gun barrel by using a thermal shroud as an absorber mass. DTS(Dynamically Tuned Shroud) is a vibration damping system using a thermal shroud as an added mass for decreasing remained vibration. The model has an advantage that the gun barrel's vibration can be decreased by dissipating a kinetic energy of thermal shroud without install an additional dynamic absorber to tip of the gun barrel. For analyzing the damping performance of the DTS, We derived an equation of motion of the barrel after setting a mathematical modeling, and found out the frequency analysis and tendency according to stiffness ratio between barrel and shroud.

  • PDF

Digital Control of Automatic Gun Systems Incorporating an Intermittently Rotating Chamber (간헐 회전식 약실을 적응한 자동포 시스템의 디지털 제어)

  • Lim, S.C.;Kim, K.K.;Shim, J.S.;Kil, S.J.;Kim, H.C.;Lee, G.H.;Cha, G.U.;Cho, C.K.;Hong, S.K.
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.126-133
    • /
    • 2007
  • Lately, there exist growing demands to increase the firepower of mid-calibre automatic guns despite spatial limitations of armament. In this context, ammunitions of simple cylindrical shape are considered so advantageous that associated automatic guns are under development incorporating an intermittently rotating chamber mechanism. In this paper, relevant subsystems for such guns are to be described, and a digital controller to automate the entire system as well. Via dynamic simulations it proves to function well being able to drive the chamber at any constant speed up to 200spm, which is merely limited by the recoil performance. It is remarkable that the system synchronization idea in use is applicable to any other multi-actuator systems that should operate on the basis of event rather than time.

Study for Analyzing Defense Industry Technology using Datamining technique: Patent Analysis Approach (데이터마이닝을 통한 방위산업기술 분석 연구: 특허분석을 중심으로)

  • Son, Changho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.101-107
    • /
    • 2018
  • Recently, Korea's defense industry has advanced highly, and defense R&D budget is gradually increasing in defense budget. However, without objective analysis of defense industry technology, effective defense R&D activities are limited and defense budgets can be used inefficiently. Therefore, in addition to analyzing the defense industry technology quantitatively reflecting the opinions of the experts, this paper aims to analyze the defense industry technology objectively by quantitative methods, and to make efficient use of the defense budget. In addition, we propose a patent analysis method to grasp the characteristics of the defense industry technology and the vacant technology objectively and systematically by applying the big data analysis method, which is one of the keywords of the 4th industrial revolution, to the defense industry technology. The proposed method is applied to the technology of the firepower industry among several defense industrial technologies and the case analysis is conducted. In the process, the patents of 10 domestic companies related to firepower were collected through the Kipris in the defense industry companies' classification of the Korea Defense Industry Association(KDIA), and the data matrix was preprocessed to utilize IPC codes among them. And then, we Implemented association rule mining which can grasp the relation between each item in data mining technique using R program. The results of this study are suggested through interpretation of support, confidence lift index which were resulted from suggested approach. Therefore, this paper suggests that it can help the efficient use of massive national defense budget and enhance the competitiveness of defense industry technology.

Miniaturized Ground-Detection Sensor using a Geomagnetic Sensor for an Air-burst Munition Fuze (공중폭발탄용 신관에 적용 가능한 초소형 지자기 지면감지 센서)

  • LEE, HanJin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.97-105
    • /
    • 2017
  • An air-burst munition is limited in space, so there is a limit on the size of the fuze and the amount of ammunition. In order to increase a firepower to a target with limited ammunition, it is necessary to concentrate the firepower on the ground instead of the omnidirectional explosion after flying to the target. This paper explores the design and verification of a ground-detection sensor that detects the direction of the ground and determines the flight-distance of an air-burst munition using a single axis geomagnetic sensor. Prior to the design of the ground detection sensor, a geomagnetic sensor model mounted on the spinning air-burst munition is analyzed and a ground-detection algorithm by simplifying this model is designed. A high speed rotating device to simulate a rotation environment is designed and a geomagnetic sensor and a remote-recording system are fabricated to obtain geomagnetic data. The ground detection algorithm is verified by post-processing the acquired geomagnetic data. Taking miniaturization and low-power into consideration, the ground detection sensor is implemented with analog devices and the processor. The output signal of the ground detection sensor rotating at an arbitrary rotation speed of 200 Hz is connected to the LED (Light Emitting Diode) in the high speed rotating device and the ground detection sensor is verified using a high-speed camera.

A Rotating Chamber Mechanism and Its Controller for CTA Guns (CTA 자동포용 회전 약실 기구 및 제어기)

  • Lim, S.;Kim, K.K.;Shim, J.S.;Kil, S.J.;Lee, G.H.;Cha, G.U.;Cho, C.K.;Hong, S.K.
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.50-59
    • /
    • 2006
  • Lately, there exist growing demands for the use of CTAs(Cased Telescoped Ammunitions) to increase the firepower of mid-calibre automatic guns despite spatial limitations of armament. In this paper, for automatic CTA guns a rotating chamber mechanism is designed based on parallel index concept. Via dynamic simulations it proves capable of smooth operation even at as high a firing rate as 200spm. Subsequently, motor controllers are synthesized to drive the chamber at any constant speed and also to control positions in the presence of large disturbances caused by the intermittently-rotating load. It is remarkable that we successfully adopted a disturbance observer to treat disturbances only with a moderate bandwidth of the closed-loop system.