• Title/Summary/Keyword: Fired Power Plant Accident

Search Result 4, Processing Time 0.019 seconds

The Value of a Statistical Life and Social Costs of Death due to Nuclear Power Plant Accidents and Energy Policy Implications (원자력발전소 사고 사망의 통계적 생명가치와 사회적 비용 및 에너지정책 시사점)

  • Yong-Joo, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.79-90
    • /
    • 2023
  • The study is to estimate the social costs of premature deaths due to nuclear power plant(NPP) accidents, by resorting to the contingent valuation method(CVM) which is used to estimate the value of a statistical life(VSL). The VSL estimate is about 3.55 billion won, which is multiplied by some 1.8 million premature deaths due to the accidents in world history of NPP, to get a maximum social cost of 1,952 trillion won. This estimate is equivalent to the 2022 real GDP of Korea. The annual average number of premature deaths and the resulting average social cost is 26,000 and 28 trillion won, respectively. The social cost of premature deaths due not only to accidents, but also the air pollutants from fired power plants(FPP) during 1987~2021 is estimated to be 26,919 trillion won. This is equivalent to 2021 US GDP, and is about 3,000 times higher than that for NPP of 9 trillion won. In 2021, the estimated social costs of FPP and NPP are 1,075 trillion won and 292 billion won, respectively. For South Korea, the study suggests to adapt an energy mix of increased share of electricity production for NPP relative to FPP, given that the 2050 carbon neutrality strategy of Korea is expected to lead to an increased share of renewable energy in electricity production. The study emphasizes accumulating the number of CVM-based VSL studies to ensure efficient energy policies.

A Economic Evaluation for APR+ Standard Design (APR+ 표준설계에 대한 경제성 분석)

  • Ha, Gag-Hyeon;Lee, Jae-Ho
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.43-47
    • /
    • 2016
  • KHNP CRI has developed APR+ nuclear power plant since 2007, which is GEN III+ model with 1500 MWe capacity. To develop safer nuclear power plant than APR1400, we investigated advanced design features of ALWR being constructed in Korea and being developed/constructed in foreign countries. We applied the advanced design features and lessons learned from Fukushima accident to develop APR+ standard design suitable for both domestic construction and overseas construction business. One economic assessments have performed during safety design improvement phase(2013.1 ~ 2015.12) of APR+. The result of the economic analysis for APR+ safety inhancement design showed that APR+ N-th plant is about 39.2% more economical than coal-fired 1,000MW power plant. Also APR+ plant is more cost advantage over foreign advanced nation ALWRs.

A Generating Cost Evaluation of APR+ Standard Design (APR+ 표준설계 발전원가 분석)

  • Ha, Gag-Hyeon;Kim, Sung-Hwan;Lee, Jae-Ho
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.236-239
    • /
    • 2014
  • KHNP CRI has been developing APR+ nuclear power plant since 2007, which is GEN III+ model with 1500 MWe capacity. To develop safer and more economical nuclear power plant than APR1400, we investigated advanced design features of ALWR(advanced light water reactor) being constructed in Korea and being developed/constructed in foreign countries. We applied the advanced design features and lessons learned from Fukushima accident to develop APR+ standard design suitable for both domestic construction and overseas construction business. Three economic assessments have performed during standard design phase of APR+. The result of the 3th(final) economic analysis for APR+ standard design showed that APR+ N-th plant was about 23% more economical than coal-fired 1,000MW power plant.

A Research on the Economic Feasibility of Korean Nuclear Power under the Condition of Social Acceptance after Fukushima Accident (후쿠시마원전사고 이후 원전 경제성과 안전성(사회적 수용성)의 최적점 연구)

  • Kim, Dong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.207-212
    • /
    • 2013
  • Since the Fukushima nuclear power plant accident in March 2011, critical views on the increase in operation of nuclear power plants including the safety and the economic feasibility thereof have been expanding across the world. In these circumstances, we are to find out solutions to the controversial questions on whether nuclear power plants are economically more feasible than other energy sources, while the safety thereof is fully maintained. Thereby, nuclear power plants will play a key role as a sustainable energy source in the future as well as at present. To measure the social safety level that Korean people are actually feeling after the Fukushima accident, a method of cost-benefit analysis called the Contingent Valuation Method(CVM) was used, whereby we wanted to estimate the amount of expenses the general public would be willing to pay for the safety based on their acceptance rather than the social safety. As a result of calculating the trade-off value of the economic feasibility versus the safety in nuclear power plants through the survey thereon, it caused the nuclear power generation cost to be increased by 4.75 won/kWh. Reflecting this on the current power generation cost of 39.11 won/kWh would increase the cost to 43.86 won/kWh. It is thought that this potential cost is still more competitive than the coal-fired power generation cost of 67 won/kWh. This result will be available as a basic data for the 2nd Energy Basic Plan to be drawn up this year, presenting policy implications at the same time.