• Title/Summary/Keyword: Fire toxicity index

Search Result 30, Processing Time 0.023 seconds

A Study on the Fire Risk of Car Interior Materials (자동차 내장재의 화재위험성에 관한 연구)

  • Lee, Hae-Pyeong;Kim, Young-Tak
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.82-88
    • /
    • 2010
  • In this study, we have performed several tests for composite plastic materials to be applied on interior materials of a vehicle to identify their combustion characteristics using cone calorimeter, smoke density chamber and toxicity index chamber. We have prepared a total of 12 samples for 4 major parts of a vehicle wherein each major part has 3 different materials. The results of cone calorimeter test showed ignition time of PVC sheet and PVC leather were 2s. The 8 samples showed under less than 10s of ignition time. The sample comprising Nylon and PE had the biggest maximum heat release rate of 635 $kW/m^2$. The sample comprising Rubber showed the smallest maximum heat release rate but with the biggest total heat release. The results of smoke density chamber test showed the sample that is made up with Rubber had the biggest specific optical smoke density. The sample comprising PVC leather and PUR showed the biggest VOF4 which enables the initial smoke production. The results of toxicity index test showed that all samples contained carbon dioxide content exceeding its lethal concentration. The sample comprising PVC showed high content of hydrogen chloride and hydrogen bromide. The PVC sheet showed the biggest toxicity index calculated by using lethal concentration and test results. Toxicity index of all sample wes over 1.

A Study on Total Fire Risk Assessment of Wallpapers (벽지의 종합적 화재 위험성 평가에 관한 연구)

  • 박미라;김광일;김태구
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2003
  • The purpose of this study is to evaluate flame retardant performance, thermal stability and toxicity of combustion gases for some commercial wallpapers. ID evaluate flame retardant performance 45 degree combustion experiment method was used and thermal stability was evaluated using DSC and TGA apparatus (OSC-50/Shimadzu, TGA2050/TA Instruments Inc) . Concentrations of CO, $CO_2$, HCN and HCI were measured with (GASTEC/Japan, MSA400 Gas Monitor/Infitron Inc) and toxicity indices using NIST N-Gas Model were applied to evaluate the toxicity of combustion gases. The evaluation produced the following results : First, paper cork and PVC wallpaper treated with flame retardants were found to be suitable for flame retardant performance standards. Second, paper, cork and PVC wallpaper non-treated with flame retardants were shown to be relatively more hazardous because they had greater calorific values and a faster decomposition time than the flame retardant treated wallpapers. Third, the toxicity indices of non-treated wallpapers were found to be higher than those of treated wallpapers, and the toxicity index of PVC wallpapers was higher than those of paper and cork wallpapers.

A Study on Technical Trend of Fire Safety on Railway Vehicles for Launch CEN/TS 45545 (CEN/TS 45545 출범에 따른 철도차량 화재안전 기술 동향에 대한 연구)

  • Sung, Si-Young;Woo, Yee-Wan;Park, Jea-Hong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1768-1773
    • /
    • 2010
  • CEN/TS 45545 is Europe consolidation standard for fire safety on railway behicles. This is based on the International Union of Railways(UIC) and different European countries. It is intended to protect passengers and staff in railway in the event of a fire on board. It will be prepared in 2012. Based on this consolidate standard, they are going to make single market, for raising technical competitiveness, technical innovation and globalization of that standard. For this reason, European academies, manufacturers, and sub-manufacturers confer and stady animated about CEN/TS 45545. In Korea, get out the safety assessment for ues incombustible interior material, the needs of quantitative analysis on fire protection, demand on recognition of fire protection scenario, and define about fire load analysis are becomin more and more important. Therefore, this paper will estimate and compare Flammability, Smoke Density, Toxicity Index( this is the key point for appraised fire safety performance of material) between CEN/TS45545 and fire standards on railway vehicle. Then suggest criteria for fire safety on railway vehicles.

  • PDF

Hazard Assessment of Combustion Gases from Interior Materials (주요 건축 내장재의 연소가스 유해성 평가)

  • Seo, Hyun Jeong;Son, Dong Won
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.49-56
    • /
    • 2015
  • Toxic gases from five types of interior building materials were investigated according to Naval Engineering Standard (NES) 713. The materials were plywood, indoor wall coverings (wood wall plate members and pine wood), reinforced Styrofoam insulation, laminate flooring, and PVC. Specimens were measured using an NES 713 toxicity test apparatus to analyze the hazardous substances in combustion gas from the materials. We used the US Department of Defense standard (MIL-DTL, Military Standard) to calculate the toxicity index of the combustion gas. Emissions of $CO_2$ from all specimens did not exceed the NES 713 limit of 100,000 ppm. The amount of CO gas emissions from reinforced Styrofoam insulation was 6,098 ppm. 25 ppm and 49 ppm of formaldehyde were released from the reinforced Styrofoam insulation and PVC flooring, respectively. These values were less than the limit of 400 ppm. The highest emissions were from $NO_X$ emitted by plywood and were above the limit of 250 ppm. The toxicity index of the specimens were calculated as 5.19 for plywood, 4.13 for PVC flooring, 2.35 for reinforced Styrofoam insulation, 2.34 for laminate flooring, and 1.22 for indoor wall coverings (pine wood). Our research helps us to understand the properties of these five interior materials by analyzing the combustion gas and explaining the toxicity of constituents and the toxicity index. Also, it would be useful for giving fundamentals to guide the safe use of interior materials for applications.

Experimental Study on the Toxicity Characteristics of Non-Class 1E Cables according to Accelerated Deterioration (가속열화에 따른 비안전등급 케이블의 독성특성에 관한 실험적 연구)

  • Jang, Eun-Hui;Kim, Min-Ho;Lee, Min Chul;Lee, Sang-Kyu;Moon, Young-Seob
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.105-113
    • /
    • 2019
  • This study investigates the toxicity characteristics of two Non-Class 1E Cables (For security reasons, we refer to company A and company B) used in nuclear power plants according to the accelerated deterioration period. In accordance with NES 713 test equipment and standards, tests were carried out on non-aged cables and the cables subjected to 20- and 40-year-accelerated-deterioration; each of the cables was further classified into sheath and insulation. The test results showed that the toxicity indices of 20- and 40-year-accelerated-aged cables were higher than those for the non-aged cables, and 20-year-aged cables of both A and B companies showed the highest toxicity indices. This is attributed to the extensive emissions of carbon monoxide and halide gases such as hydrogen chloride and hydrogen bromide. Furthermore, to analyze the toxicity indices of sheath and insulation in detail, the US Department of Defense standard (MIL-DTL) was applied to determine whether the Toxicity index (T.I.) allowance was exceeded, and the results showed that the insulating materials emitted considerably more than the allowable limit.

Fire Safety Characteristics of the FRP composites for railcar (철도차량용 FRP 내장재의 화재안전성 평가)

  • 이덕희;정우성;김용기;김선옥
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.962-968
    • /
    • 2002
  • In this study we reported the Smoke Density, the Toxicity, the Flame Spread Characteristics and the Oxygen Index of the FRP composite interior panels for raicars. Also investigated the test codes of the concerning items of other countries. We made some samples to the variance of resin types, surface finishing methods and panel shapes. It's not the really used ones but may help us effectively to guess the fire safety characteristics of railcars.

  • PDF

The Experimental Study on the Toxic Gases Released from the Floor Finishing Materials in Entertainment Service Industry Buildings (다중이용시설 바닥마감재의 연소가스 독성평가에 관한 실험 연구)

  • 강성동;이창우;현성호;윤명오
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.14-21
    • /
    • 2002
  • The several floor finishing materials that widely used in entertainment service industry buildings were evaluated according to the method of NES 713. Also, toxic gases of floor finishing materials in combustion without air flow rate were checked as concentration of fire gases variation according to time using gas analyzer. We had estimated the smoke hazard of floor finishing materials in fire. As results of gas analyses using the method of NES 713, toxic index of samples was estimated range of 2~9.7. Therefore, a large amount of toxic gases will release from a floor finishing materials fire and connoted great smoke hazard in fire.

A Study on the Fire Safety Performance of Interior Surface Materials in a Building (건축물의 실내건축 재료에 관한 화재안전성 연구)

  • Seo, Su-Eun;Shin, Seung-Woo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.11a
    • /
    • pp.275-290
    • /
    • 2013
  • The main cause of building fire fatalities occur in the combustible material heat, smoke and toxic gases are. Building interior decoration, etc., especially as much of the harmful substances generated during combustion, and, used in domestic architecture wallpaper, ceiling, and other plastics, built-in foam insulation also analyzed recognition of fire hazards approach to test the conkalrorimiteo test, choedaeyeolbangchulryul through, chongbal heat, mass loss rate, generates carbon monoxide gas hazard ratio tests, analysis and evaluation rigid foam index testing the toxicity of hazardous material generated by performing a gas clean up and assess the material test results, the minimum order to provide data to quantify the risk of fire. Ensure fire safety of building materials, composite materials in order to test the various risk factors could be considered organic to the introduction of testing and evaluation is needed urgently.

  • PDF

A Toxicity of Interior Upholstery in Apartment Housing (아파트 마감재의 연기 유독성)

  • Ham, Sang-Keun;Kim, Hong;Han, Sang-Bum;Kim, Woon-Hyung
    • Fire Science and Engineering
    • /
    • v.15 no.3
    • /
    • pp.36-43
    • /
    • 2001
  • Several types of widely used interior upholsteries including wallpaper, veneer board and floor cover, were selected to be evaluated by using the method of NES 713 text. Test results indicates that a fire with retardant wallpaper release a large amount of toxic gases when constantly exposed to a fire source. When evaluated in terms of the masses of released gases, the release of Carbon monoxide appears the highest in case of wallpaper fire, while the ratio of CO/Mass loss appears the highest in case of floor cover fire. Therefore, it can be concluded that, a large amount of toxic gas will release from a floor cover fire with even a small quantity of fuel.

  • PDF

A study on combustion gas toxicity of polymeric materials using FTIR gas analysis (FTIR 가스분석에 의한 고분자재료의 연소가스독성 평가)

  • Lee, Doo-Hyung;Kong, Young-Kun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.79-84
    • /
    • 2005
  • When polymeric materials are exposed to fire condition, a lot of heat and toxic gases evolved and cause damage to property and human being. Especially toxic gases are major hazard to life safety. This study FTIR(Fourier Transform Infrared) spectrometer analysis was performaed to etermine the gas analysis and the concentration of gases evolved from PVC, FRP, SMC and Ureathane foam using ASTM E 1678 fire model. And FED toxicity index calculated from FTIR data also presented. By the comparison of animal test adopted in KS F 2271 and FTIR gas analysis method, FTIR gas analysis method can replace current animal toxicity test and produce precise and quantitative combustion gas data.