• Title/Summary/Keyword: Fire sprinkler head

Search Result 58, Processing Time 0.023 seconds

An Analysis of Working Hours by Type of Sprinkler Head Used at Indoor Gymnasiums

  • Ahn, Jae-Cheon;Kong, Ha-Sung
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.117-123
    • /
    • 2021
  • This study aims to analyze working hours of sprinkler heads when a fire occurs at an indoor gymnasium while sprinkler heads are installed in division of standard response type, special response type, and earlier response type. The fire scenario was designed under the assumption that the fire started from overheating of a heater in the indoor gymnasium has transferred on to a couch to spread. The analysis on the operation time of the standard response type sprinkler head, the special response type sprinkler head and the early response sprinkler head was conducted. The result showed that, in case of fire in a gymnasium, the time for opening of the heat sensor due to the heat from the fire varies by the type of the sprinkler head. When a special response type sprinkler is installed, it worked below the assessment standards. When an early response sprinkler head is installed, it worked appropriately according to assessment standards. Based on the results, we found that sprinkler heads will work properly when installed according to design relevant to laws and regulations. This means that there is a limit in installation of sprinkler heads based on the existing law-based design as for indoor gymnasiums. Again, we conclude that if sprinkler heads are installed based on design made through laws and regulations, more time will be needed for operation, making it highly likely to fail to stop a fire at an earlier point of time.

The Study on Characteristics of Water Spray and Droplet from Fire Sprinkler Head (소화용 스프링클러 헤드의 살수분포 및 수적 특성에 대한 연구)

  • 추병길;최종욱;차경세
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.13-21
    • /
    • 2001
  • The effect of water spray for the fire sprinkler depends on droples distribution over maximum possible floor area. The present study are carried out for the characteristics of water spray and droplets experimentally and numerically km two fire sprinkler heads which are CHM head and CHl heal CHl head is self-production and CHl head is widely used up to date. As the result of using CHM head, water spray and droplets are distributed over large area because CHM head has smooth surface and non-flamed shape. When the pressure of fire sprinkler head is low, SMD(sauter mean diameter) is large and when the pressure of fire sprinkler head is high, SMD is small.

  • PDF

An Experimental Study on the Extinguishing Performance of Sprinkler Heads according to Discharge Coefficient (스프링클러 헤드의 방수상수에 따른 소화성능에 관한 실험적 연구)

  • Hur, Min Noung;Shin, Chang Sub
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.32-38
    • /
    • 2018
  • The sprinkler system is a basic fire extinguishing system widely used, but there is a lack of quantitative assessment of its performance. In this study, to evaluate the fire extinguishing performance of the sprinkler head according to the discharge coefficients, experiments were conducted. Experimental sprinkler heads were selected with heads having K50, K80 and K115 water discharge coefficients, and the fire source was assumed to be an indoor fire in Class A Model 1. As experimental results, the time required for the fire chamber to cool down to $200^{\circ}C$ was 26 seconds for the K115 head, 414 seconds for the K80 head, and 481 seconds for the K50 head, so the cooling time of the K115 head was decreased by 94.5% compared to K50 head. In the case of restoring the oxygen concentration to 15%, the K115 head did not decrease below the oxygen concentration of 15%, and the K80 head took 145 seconds and the K50 head took 484 seconds. The lowest oxygen concentration in the fire chamber was 16.1% for the K115 head, 14.33% for the K80 head, and 11.28% for the K50 head, indicating that the K115 head was superior to the K80 and K50 heads by 13.1% and 43.7%, respectively. As the experimental results show, there is big difference in the extinguishing performance depending on the discharge coefficients of the sprinkler head. Therefore, in designing the sprinkler system, the discharge coefficients of the sprinkler head should be selected considering the heat release rate at the installation site and the fire extinguishing characteristics of sprinkler head.

Analysis of Water Flux Uniformity for Various Fire Sprinkler Head Type (화재 진압용 스프링클러 헤드 유형에 따른 살수 균일도 분석)

  • Saemi Bang;Chanseob Ahn;Taehoon Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.97-104
    • /
    • 2023
  • A sprinkler is a fire suppression system that extinguishes combustible materials in the early stages of a fire, creating a spray. However, spray formation method of the sprinkler can result in an uneven distribution of water spray on the surface of combustible materials. It is necessary to ensure a consistent water flux density regardless of the spray direction and angle. In this study, the water flux distribution was analyzed for the various types of sprinkler head: circular, flush, pendent, and upright types. All sprinkler heads have a K-factor of 80 LPM/(0.1MPa)0.5. In this study, water collection cubes were used to examine the water flux distribution. The upright type sprinkler head showed a low standard deviation in total sprayed area, indicating a high level of uniformity. The upright type head showed the lowest standard deviation in the radial direction, and also showed the lowest standard deviation in the azimuthal direction. Upright sprinkler head has no obstructing structure along the path of droplets after they are generated. For this reason, upright sprinkler head showed the most uniform water flux distribution on the floor.

Combustible Gas and Visible Distance by Sprinkler Head for Safety of Gymnasium Workers

  • Ahn, Jae-Cheon;Kong, Ha-Sung
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.232-244
    • /
    • 2021
  • This study analyzed the changes in carbon monoxide, carbon dioxide, oxygen and visual distance by presence of sprinkler heads and their types in the event of a fire in an indoor gymnasium. Based on carbon monoxide and visual distance that affects human bodies enormously, first, if there is no sprinkler head, carbon monoxide will reach 0.4% within five seconds and visual distance rapidly shrank within five seconds. Seconds, in the event of standard sprinkler heads, carbon monoxide gradually increased from 30 seconds onwards and visual distance rapidly shrank after five seconds. Second, Third, if there are special sprinkler heads, carbon monoxide fluctuated after opening the head and visual distance became 5m or below from 15 seconds. Finally, in the event of early response sprinkler heads, carbon monoxide fluctuated up and down at 3 seconds due to falling water drops. Visual distance shrank up to 5m or below at 6 seconds. In the future, time for operation of each sprinkler head shall be analyzed.

Activation Conditions of Sprinkler Head Considering Fire Growth Scenario (화재성장시나리오에 따른 스프링클러 헤드의 작동조건)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.45-51
    • /
    • 2020
  • The aim of this study is to investigate the gas temperature and velocity during sprinkler activation considering the fire growth scenario based on the thermal response model of the sprinkler. The fire source is assumed to have time square fire growth scenarios with a maximum heat release rate of 3 MW. Eight types of standard and fast-response sprinkler heads with an operating temperature range of 65-105 ℃ and a response time index range of 25-171 m1/2s1/2 were adopted. The temperature difference between the gas stream and the sensing element of the sprinkler head decreased as the fire growth slowed down, and the RTI value decreased. The overall gas temperature and velocity conditions predicted using the FDS model at sprinkler activation were in reasonable agreement with those of standard test conditions of the sprinkler head response. However, the sprinkler head could be activated at lower limits of gas temperature and velocity under the current test conditions for a slowly growing fire scenario.

Experimental Study on the Characteristics of Thermal Sensitivity for Fusible Alloy Type Sprinkler Head (가용합금형 스프링클러 헤드의 열감도 특성에 관한 실험적 연구)

  • 권오승;이진호
    • Fire Science and Engineering
    • /
    • v.9 no.1
    • /
    • pp.20-29
    • /
    • 1995
  • The sprinkler head is a component of the sprinkler system intended to discharge water for automatic detection and extinguishment of fires. On this study, thermal characteristic values affecting the sensitivity of the fusible alloy type sprinkler head were obtained and analyzed under heated air stream condition which had constant temperature and velocity. The experiment was carried out under the forced convection condition with both the conductive heat loss considered and neglected. The thermal characteristic values of the sprinkler head were obtained in accordance with the material and shape of the heat responsive element and the conditions of the main body.

  • PDF

An Experimental Study on the Responsiveness of Sprinkler Heads (스프링클러헤드 응답성에 관한 실험적 연구)

  • 김동석;박용일;박희용
    • Fire Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.3-12
    • /
    • 1993
  • The closed type sprinkler head is a component of sprinkler system for fire protection. The purpose of this study is to inverstigate the influence factors of the responsiveness of the head by heated wind tunnel experiment. As the result of this study, it was found that response time index and conduction parameter showed the same characteristic quantitative changes to head types and test methods.

  • PDF

Experimental Study on the Suppression Performance of Sprinkler Systems in Rack-type Warehouses (랙크식 물류창고의 스프링클러설비 소화성능에 관한 실험연구)

  • Choi, Ki-Ok;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.44-50
    • /
    • 2019
  • In rack-type warehouses, it is difficult to extinguish fires effectively using sprinkler systems because high fire load commodities are stacked vertically and densely. In this study, an actual size rack structure was constructed and the effectiveness of the fire extinguished by the sprinkler system was confirmed through fire tests according to the type and arrangement of the sprinkler head in the rack structure. Through this study, to effectively suppress fires in rack-type warehouses, it is necessary to use sprinkler heads with a volume of more than 115 LPM and sprinkler heads need to be installed at the diagonal corner positions of the commodities of each rack.

A Study on a PCB Manufacturing Plant's Fire Risk Assessment due to the Mitigation of Fire Protection Zone and an Improvement Way through Estimation of Sprinkler Demand Water Flow Rate (방화구획 완화에 따른 PCB공장의 화재위험평가 및 스프링클러 요구살수유량 산정을 통한 기준개선안에 관한 연구)

  • Oh, Chan-Wook;Oh, Ryun-Seok;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.56-62
    • /
    • 2019
  • A sprinkler is a fire extinguishing equipment installed in a protected area where a detector or head detects a fire and automatically puts out the fire. However, the Ministry of Land, Infrastructure and Transport's "Regulations on Building Evacuation and Fire Protection Standards, etc." stipulate that fire compartment area should be reduced to three times by installing sprinkler facilities in the case of factories and warehouses. In this study, fire hazard was analyzed for a real PCB factory which mitigated the fire protection zone by sprinkler installation, and the head opening characteristics of sprinkler facilities through computer simulation, installation standards of sprinkler facilities, thermal performance, operating range, and the amount of water sprayed to identify the problems of operation of sprinkler facilities in case of fire, and to suggest the grounds such as required sprinkling flow rate for system improvement.