• Title/Summary/Keyword: Fire spread

Search Result 468, Processing Time 0.029 seconds

Simulation of a Clean Room Fire II. Needs of Smoke Control System and Springkler System (청정실 화재의 시뮬레이션 II. 제연설비와 스프링클러설비의 필요성)

  • Park, Woe-Chul;Lee, Man-Geun;Park, Hun-Sik
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.8-13
    • /
    • 2006
  • Numerical simulations were carried out for a fire in a clean room to confirm needs of a smoke control system and a sprinkler system, and to investigate a possible smoke spread-out. For a 1 MW methanol fire in a space of $39m{\times}13m$ floor and 4 m high, smoke spread-out was scrutinized for failure of the sprinkler system and/or the smoke control system. It was shown that the smoke control system removes smoke safely without the sprinkler system and that the sprinkler system is required to suppress smoke generation and spread of the fire, and to remove the smoke quickly. It was also confirmed that highly reliable sprinkler heads and automatic fire detection system are required for the sprinkler and smoke control systems.

Developing of an extinguishing system for a fire at an early stage in Unmanned Engine Room for small vessels (소형선박용 무인기관실 초기화재 진압시스템 개발)

  • Kim, Sung-Yoon;Kim, Dong-Seuk;Kim, You-Taek
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.333-334
    • /
    • 2006
  • Extinguishing a fire at an early stage is most important to prevent spreading of a fire in Unmanned Engine Room. The most proper fire extinguish system was analyzed after examining the Automatic spread Extinguish System, which is mostly installed in Unmanned Engine Room, reproduced in the condition of real Unmanned Engine Room.

  • PDF

A Room-Corner Fire Model을 적용한 건축내장재의 화재확산 특성 평가(1)

  • Kim, Un-Hyeong
    • Fire Protection Technology
    • /
    • s.24
    • /
    • pp.32-39
    • /
    • 1998
  • A room-corner fire scenario of ISO 9705 with flame spread model developed by Quintiere is applied to the interior finish materials to show the sensitivity of properties derived from AST, E-1321 and ASTM E-1354 is investigated and various range of thermal properties by the author were analyzed in the model. There are including flame heat flux and thermal inertia, lateral flame spread parameter, heat of combustion and effective heat of gasfication. The time for total energy release rate to reach 1MW is examined. Though some areas are neede for improvements, The model appears to predict good results with all the range of input properties and could be

  • PDF

Analysis of Smoke Spread Effect Due to The Fire Location in Underground Subway-Station (대심도 역사의 화재위치에 따른 연기확산 영향 분석)

  • Jang, Yong-Jun;Koo, In-Hyuk;Kim, Jin-Ho;Nam, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2885-2890
    • /
    • 2011
  • Simulation study were performed for fire location effect on the smoke spread in the deeply-underground subway station(DUSS). In this research, Shingumho station (The line # 5, Depth: 46m) has been selected as case-study for the analysis of smoke-spread effect with the different fire location. Field test data measured for actual fan in DUSS was applied as a condition of a simulation. The whole station was covered in this analysis and 4 million grids were generated for this simulation. The fire driven flow was analyzed case by case to compare the smoke-spread effect according to the fire location. In order to enhance the efficiency of calculation, parallel processing by MPI was employed and LES(large eddy simulation) method in FDS code was adopted.

  • PDF

Overview of Fire Safety onboard International Space Station(ISS): Characteristics of Flame Ignition, Shape, Spread, and Extinction in Microgravity (국제우주정거장 화재안전 연구개괄: 마이크로중력화염의 특성(점화/형상/전파/소멸특성))

  • Park, Seul-Hyun;Hwang, Cheol-Hong
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.21-29
    • /
    • 2012
  • Due to a significant leap in the science and technology, the manned space exploration that has started with suborbital flights is now being expanded into the deep space. The space superpowers such as the U.S. and Russia have been making an effort to further develop the manned space technology. Among such technologies, the fire safety technology in microgravity has recolonized as one of the most critical factors that must be considered for the manned space mission design since the realistic fire broke out onboard the Mir station in 1997. In the present study, the flame characteristics such as flame ignition, shape, spread, and extinction that are critical to understand the fire behavior under microgravity conditions are described and discussed. The absence of buoyancy in microgravity dominates the mass transport driven by diffusiophoretic and thermophorectic fluxes (that are negligible in normal gravity) and influences the overall flame characteristics-flame ignition, shape, spread, and extinction. In addition, the cabin environments of the pressurized module (PM) including the oxygen concentration, ambient pressure, and ventilation flow(which are always coupled with microgravity condition during the ISS operation) are found to be the most important aspects in characterizing the fire behavior in microgravity.

A Basic Study on Required Performance and Development Direction of Fire Resistance Wall on High-rise Building (초고층 건축물용 내화벽체 요구성능 및 개발방향 설정을 위한 기초연구)

  • Kim, Dae-Hoi;Park, Soo-Young
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • Recently the interest in disaster prevention on super tall buildings is increasing. Especially in fire, against increasing of evacuation time due to high-rise, It is being tried to minimize the fire spread in building. Fire compartments using the fire-resistant wall and door, typical method to control the fire spread in buildings, delay the fire spread to other compartments and consequently evacuation time increases. But the existing provisions adjure only 2-hour fire resistance with maximum limit regardless of the super tall buildings, so this is a obstacle for research and development of the fire resistance wall in super tall buildings. In this study, we reviewed the fire resistance ratings of the wall, and presented the development directions for the fire resistance wall in super tall buildings considering fire resistance, construction and application of the wall.

A Study on the Use of Balcony Areas to Improve Fire Escape for Residents in Apartments (화재피난 방안 수립을 위한 공동주택 거주자의 발코니 사용실태 조사)

  • Lee, So-Young;Lee, Myung-Sik
    • Korean Journal of Human Ecology
    • /
    • v.17 no.3
    • /
    • pp.541-552
    • /
    • 2008
  • With the increase of apartments and expansion of balcony areas, fire safety issues are becoming more important. Many researchers have conducted a lot of researches to reduce vertical flame spread in the balcony when an apartment unit is in fire. However, there have rarely been studies to use balcony area as a space for fire escape and evacuation. The study aims to examine the conditions of balcony use in apartments in order to find out prevention elements from fire escape and evacuation, and to investigate residents' satisfaction with balcony. For this study, questionnaires were collected from apartment residents and workers of architectural planning and construction companies. The findings show as follows: first, the balcony is generally used as a storage in each apartment unit nowadays. Second, when fire breaks out, many storage items could disturb residents' safe escape by blocking escape route, and easily promote to spread flame vertically in the balcony.

Igniter and Thickness Effects on Upward Flame Spread

  • J.Q. Quintiere;Lee, C.H.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.154-161
    • /
    • 1997
  • Several studies have developed upward flame spread models which use somewhat different features. However, the models have not considered the transient effects of the igniter and the burning rate. Thus, the objective of this study is to examine a generalized upward flame spread model which includes these effects. We shall compare the results with results from simpler models used in the past in order to examine the importance of the simplifying assumptions. We compare these results using PMMA, and we also include experimental results for comparison. The results of the comparison indicate that flame velocity depends on the thermal properties of a material, the specific model for flame length and transient burning rate, as well as other variables including the heat flux by igniter and flame itself. The results from the generalized upward flame spread model can provide a prediction of flame velocity, flame and pyrolysis height, burnout time and position, and rate of energy output as a function of time.

  • PDF

A Study on the Fire Safety of High-rise Apartments Based on Fire Door Switch and Automatic Fire Extinguishing System

  • Zhang, ZeChen;Kong, Ha-Sung
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.424-430
    • /
    • 2021
  • The purpose of this study is to analyse the characteristics and spreading laws of parameters such as fire smoke, concentration of CO, visibility, and temperature at fire scene in high-rise residential buildings under the different conditions of fire doors and automatic fire extinguishing systems. Using Pyrosim to simulate diverse fire scenes in a high-rise apartment with corridors, to analyze the changes in those parameters. The results show that when a fire occurs, closing the fire-fighting corridor will increase the smoke temperature and concentration of CO in the stairwell, and reduce the height and visibility of the smoke layer; the automatic fire extinguishing system effectively suppresses the increase in the temperature of the fire smoke and the sedimentation of the smoke layer. Reasonable setting and operation of the automatic fire extinguishing system could effectively inhibit the spread of fire. Although closing fire corridor can slow down the direct upward spread of smoke through the corridor, it will force the fire smoke into the stairwell, which will seriously affect evacuation through the stairs. Therefore, in order to reduce risks, it is forbidden to close the fire doors of the firefighting corridor and stacking combustible materials in the corridor, Also, intensifying inspections and ensuring the normal operation of the automatic fire extinguishing system are indispensable. Based on the research results, the significance of installing fire-fighting facilities in the construction of high-rise apartments was discussed and proved.

A Study on Flash Over Delay Effects on Applied Plate-Fire Spread Prevention Method at Sandwich Panels Structure (샌드위치패널 건축물 플래시오버 지연을 위한 화재확산방지플레이트 시공방법 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.79-87
    • /
    • 2017
  • Sandwich panels which are having the both sides are bonded with a heat insulating material with an iron plate are used as factories, warehouse structures as advantages of convenience in construction at economic efficiency of material cost. However, in a panel structure constructed by continuous joining of sandwich panels, a joint portion where a panel and a panel are connected is generated. The joint part is a part which is easily vulnerable to fire because flames easily flow into the melting and deformation of the iron plate during fire. The flames flowing into the panel induce diffusion of fire by rapid burning, causing damage of human life and property. In this research, we developed a flame spread prevention plate to prevent spreading of sandwich panel. This is an improvement of the workability by the anti-spreading construction method of the existing previous research, it can be applied independently to the connecting part where the panel and the panel are coupled, designed to prevent inflow and spreading of flame did. The actual fire test of the test method of KS F ISO 13784-1 of the sandwich panel specimen was conducted and the burning behavior corresponding to the presence or absence of application of the flame spread prevention plate was grasped at the panel connection part and its effect was measured. Inserting a fire spreading plate into the test result panel connecting part is measured by delaying the flashover, prevention of collapse of the specimen, and temperature rise of the opening, effectively improving the fire safety of the panel structure It was confirmed as a method that can be secured. It is judged that panel structure will contribute to ensuring fire safety by applying the fire spread prevention construction method of various methods ensuring the workability and economy of panel connection vulnerable to fire.