• Title/Summary/Keyword: Fire risk analysis

Search Result 502, Processing Time 0.027 seconds

A Study on the Actual Condition of Gas Equipment and Gas Safety Consciousness Survey to Improve Gas Safety of Gas Consumers (가스 소비자들의 가스안전성 제고를 위한 가스기기 사용 실태 및 가스안전의식 조사에 관한 연구)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.465-475
    • /
    • 2017
  • As a result of a survey on households using gas, gas safety accidents have been declining linearly in 2006. However, when analyzing the causes of gas accidents, accidents detail caused by carelessness have increased to 62%It is analyzed that urgent measures are needed. In addition, 7 households per 10 households perceive city gas as safe, but 30% of them recognize that gas safety accidents are likely to occur in their homes in the future. Even though city gas use is relatively safe,It is recognized that there is a risk. Although the perception of the gas safety of the city gas consumers is not related to the age and gender income level, it is analyzed that it is highly educated and experienced direct or indirect gas safety accident, the perception of safety was relatively low. In order to reduce gas safety accidents, the installation of gas safety equipment for elderly households should be continuously supplied. As a result of investigating the disposal costs in case of various disasters, 66% of the insurance costs were found to be highly dependent on insurance. In addition, to reduce gas safety accidents, the installation of gas safety devices for elderly households should be continuously implemented.

A Study on the Modification of NH4+Y-zeolite for Improving Adsorption/Desorption Performance of Benzene (NH4+Y-zeolite의 개질을 통한 벤젠 흡·탈착 성능 증진 연구)

  • Jang, Young Hee;Noh, Young Il;Lee, Sang Moon;Kim, Sung Su
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • A.C (activated carbon) is mainly used to remove VOCs (volatile organic compounds), however, it has many problems such as fire risk due to increasing of adsorbent surface temperature during VOCs ad/desorption, increased cost by frequent replacement cycles requirement and performance degradation when containing moisture. In order to solve these problems, many researches, hydrophobic zeolite adsorbents, have been reported. In this study, $NH_4{^+}Y$-zeolite was synthesized with Y-zeolite through steam treatment and acid treatment, which is one of the hydrophobic modification methods, to secure high surface area, thermal stability and humidity resistance. The Y, Y-550-HN, Y-600-HN and Y-650-HN had adsorption capacities of $23mg\;g^{-1}$, $38mg\;g^{-1}$, $77mg\;g^{-1}$, $61mg\;g^{-1}$. The change of Si/Al ratio, which is an index to confirm the degree of modification, was confirmed by XRF (X-ray fluorescence spectrometer) analysis. As a result, the adsorbtion performance was improved when Y-zeolite modified, and the Si/Al ratio of Y, Y-550-HN, Y-600-HN, Y-650-HN were increased to 3.1765, 6.6706, 7.3079, and 7.4635, respectively. Whereas it was confirmed that structural crystallization due to high heat treatment temperature affected performance degradation. Therefore, there is an optimal heat treatment temperature of Y-zeolite, optimum modification condition study could be a substitute for activated carbon as a condition for producing an adsorbent having high durability and stability.

Cellular Automata Simulation System for Emergency Response to the Dispersion of Accidental Chemical Releases (사고로 인한 유해화학물질 누출확산의 대응을 위한 Cellular Automata기반의 시뮬레이션 시스템)

  • Shin, Insup Paul;Kim, Chang Won;Kwak, Dongho;Yoon, En Sup;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.136-143
    • /
    • 2018
  • Cellular automata have been applied to simulations in many fields such as astrophysics, social phenomena, fire spread, and evacuation. Using cellular automata, this study develops a model for consequence analysis of the dispersion of hazardous chemicals, which is required for risk assessments of and emergency responses for frequent chemical accidents. Unlike in cases of detailed plant safety design, real-time accident responses require fast and iterative calculations to reduce the uncertainty of the distribution of damage within the affected area. EPA ALOHA and KORA of National Institute of Chemical Safety have been popular choices for these analyses. However, this study proposes an initiative to supplement the model and code continuously and is different in its development of free software, specialized for small and medium enterprises. Compared to the full-scale computational fluid dynamics (CFD), which requires large amounts of computation time, the relative accuracy loss is compromised, and the convenience of the general user is improved. Using Python open-source libraries as well as meteorological information linkage, it is made possible to expand and update the functions continuously. Users can easily obtain the results by simply inputting the layout of the plant and the materials used. Accuracy is verified against full-scale CFD simulations, and it will be distributed as open source software, supporting GPU-accelerated computing for fast computation.

Analysis and cause of defects in reinforced cement concrete lining on NATM tunnel based on the Precise Inspection for Safety and Diagnosis - Part I (정밀안전진단 결과를 활용한 NATM (철근)의 라이닝 결함 종류별 발생원인 및 분석 - Part I)

  • Choo, Jinho;Lee, Inmo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.1-29
    • /
    • 2019
  • Related to the previous paper on the typical crack pattern of tunnel lining with NATM, the characteristic defects in reinforced cement concrete lining of NATM tunnel have analyzed with the precise inspection with safety and diagnosis (PISD) by KISTEC. Depending on the reinforcing materials, steel rebar, steel fiber, and glass fiber have been implemented to reinforcing lining in various NATM tunnel constructions. Reinforcing lining with rebar are prevailed on NATM tunnel to countermeasure the weak geological circumstances, to pursuit the economical tunnel sections, and to resist the risk of tunnel deterioration. By the special act on the safety control of public facilities, the reinforced NATM tunnels for more than 1 km length are scrutinized closely to characterize defects; crack, reinforcement exposure, and lack of lining. Crack resistance by reinforcing is shown in comparison with the normalized crack to the length of tunnel. Typical exposed reinforcements in lining have exemplified with various sections. The lack of lining due to the mal-construction, spalling, fire, earthquake and leaching has been analyzed. The cause and mechanism with the field inspections and other studies has also been verified. Detailed cases are selected by the above concerns as well as the basic information from FMS (Facilities Management System). Likewise the previous paper, this study provides specialized defects in reinforced lining of NATM and it can be widely used in spreading the essential technics and reporting skills. Furthermore, it would be advised and amended for the detail guideline of Safety Diagnosis and PISD (tunnel).

A Case Study on Performance Analysis of Antimicrobial Copper Film Attaching to Window for Responding to COVID-19 and Others (코로나19 등 대응을 위한 "유리창 부착용 항바이러스 동필름" 성능분석 사례연구)

  • Kim, Seong Je
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.1
    • /
    • pp.23-40
    • /
    • 2021
  • In the era of the global coronal 19 pandemic, there is a risk of cross-infection in hospitals at the stage where treatments and vaccines are currently being developed and marketed, so individuals should enhance their acquired immunity and generalize their living systems by the performance of copper ions in the social environment. In order to prevent the spread of infection, the need for anti-bacterial film and its efficacy were analyzed through anti-viral performance tests based on research and development cases of worldwide and immemorial time. he Korea Construction Research Institute (KCL) has received anti-bacterial performance certification and anti-viral test scores from the "National Approval Performance Certification Agency." At the time, NCCP 43326 Human Corona virus (BetaCoV/Korea/KCDC03/2020), which was approved by the Centers for Disease Control and Prevention, was introduced to ensure that the activity rate of infected cells was satisfied in the anti-viral performance test. Anti-proliferation measures for the Corona 19 virus require a quality clinical trial study comparing the experimental group within the glass space where the antiviral copper film is constructed with the comparator of the same condition without copper film.

Detection of Toluene Hazardous and Noxious Substances (HNS) Based on Hyperspectral Remote Sensing (초분광 원격탐사 기반 위험·유해물질 톨루엔 탐지)

  • Park, Jae-Jin;Park, Kyung-Ae;Foucher, Pierre-Yves;Kim, Tae-Sung;Lee, Moonjin
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.623-631
    • /
    • 2021
  • The increased transport of marine hazardous and noxious substances (HNS) has resulted in frequent HNS spill accidents domestically and internationally. There are about 6,000 species of HNS internationally, and most of them have toxic properties. When an accidental HNS spill occurs, it can destroys the marine ecosystem and can damage life and property due to explosion and fire. Constructing a spectral library of HNS according to wavelength and developing a detection algorithm would help prepare for accidents. In this study, a ground HNS spill experiment was conducted in France. The toluene spectrum was determined through hyperspectral sensor measurements. HNS present in the hyperspectral images were detected by applying the spectral mixture algorithm. Preprocessing principal component analysis (PCA) removed noise and performed dimensional compression. The endmember spectra of toluene and seawater were extracted through the N-FINDR technique. By calculating the abundance fraction of toluene and seawater based on the spectrum, the detection accuracy of HNS in all pixels was presented as a probability. The probability was compared with radiance images at a wavelength of 418.15 nm to select abundance fractions with maximum detection accuracy. The accuracy exceeded 99% at a ratio of approximately 42%. Response to marine spills of HNS are presently impeded by the restricted access to the site because of high risk of exposure to toxic compounds. The present experimental and detection results could help estimate the area of contamination with HNS based on hyperspectral remote sensing.

Analysis of the Effect of Forest Fires on the Mineralogical Characteristics of Soil (산불 영향에 따른 토층의 광물학적 특성 변화에 관한 연구)

  • Man-Il Kim;Chang-Oh Choo
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.69-83
    • /
    • 2023
  • Forest fires increase the risk of subsequent soil erosion and mass movement in burned areas, even under rainfall conditions below landslide alert thresholds, by destroying plants and vegetation and causing changes to soil properties. These effects of forest fires can alter runoff in burned areas by altering soil composition, component minerals, soil water repellency, soil mass stability, and soil fabric. Heat from forest fires not only burns shallow organic matter and plants but also spreads below the surface, affecting soil constituents including minerals. This study analyzed X-ray diffraction and physical properties of topsoil and subsoil obtained from both burned and non-burned areas to identify the composition and distribution of clay minerals in the soil. Small amounts of mullite, analcite, and hematite were identified in burned soils. Vermiculite and mixed-layer illite/vermiculite (I/V) were found in topsoil samples from burned areas but not in those from non-burned areas. These findings show changes in soil mineral composition caused by forest fires. Expansive clay minerals increase the volume of soil during rainfall, degrading the structural stability of slopes. Clay minerals generated in soil in burned areas are therefore likely to affect the long-term stability of slopes in mountainous areas.

Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct (수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향)

  • Ou-Sup Han;Yi-Rac Choi;HyeongHk Kim;JinHo Lim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • Fuel gases such as methane and propane are used in explosion hazardous area of domestic plants and can form non-uniform mixtures with the influence of process conditions due to leakage. The fire-explosion risk assessment using literature data measured under uniform mixtures, damage prediction can be obtained the different results from actual explosion accidents by gas leaks. An explosion characteristics such as explosion pressure and flame velocity of non-uniform gas mixtures with concentration change similar to that of facility leak were examined. The experiments were conducted in a closed 0.82 m long stainless steel duct with observation recorded by color high speed camera and piezo pressure sensor. Also we proposed the quantification method of non-uniform mixtures from a regression analysis model on the change of concentration difference with time in explosion duct. For the non-uniform condition of this study, the area of flame surface enlarged with increasing the concentration non-uniform in the flame propagation of methane and was similar to the wrinkled flame structure existing in a turbulent flame. The time to peak pressure of methane decreased as the non-uniform increased and the explosion pressure increased with increasing the non-uniform. The ranges of KG (Deflagration index) of methane with the concentration non-uniform were 1.30 to 1.58 [MPa·m/s] and the increase rate of KG was 17.7% in methane with changing from uniform to non-uniform.

Prediction of Damages and Evacuation Strategies for Gas Leaks from Chlorine Transport Vehicles (염소 운송차량 가스누출시 피해예측 및 대피방안)

  • Yang, Yong-Ho;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.407-417
    • /
    • 2024
  • The objective of this study is to predict and reduce potential damage caused by chlorine gas leaks, a hazardous material, when vehicles transporting it overturn due to accidents or other incidents. The goal is to forecast the anticipated damages caused by chlorine toxicity levels (ppm) and to design effective response strategies for mitigating them. To predict potential damages, we conducted quantitative assessments using the ALOHA program to calculate the toxic effects (ppm) and damage distances resulting from chlorine leaks, taking into account potential negligence of drivers during transportation. The extent of damage from toxic gas leaks is influenced by various factors, including the amount of the leaked hazardous material and the meteorological conditions at the time of the leak. Therefore, a comprehensive analysis of damage distances was conducted by examining various scenarios that involved variations in the amount of leakage and weather conditions. Under intermediate conditions (leakage quantity: 5 tons, wind speed: 3 m/s, atmospheric stability: D), the estimated distance for exceeding the AEGL-2 level of 2 ppm was calculated to be 9 km. This concentration poses a high risk of respiratory disturbance and potential human casualties, comparable to the toxicity of hydrogen chloride. In particular, leaks in urban areas can lead to significant loss of life. In the event of a leakage incident, we proposed a plan to minimize damage by implementing appropriate response strategies based on the location and amount of the leak when an accident occurs.

A Study on Optimal Site Selection for Automatic Mountain Meteorology Observation System (AMOS): the Case of Honam and Jeju Areas (최적의 산악기상관측망 적정위치 선정 연구 - 호남·제주 권역을 대상으로)

  • Yoon, Sukhee;Won, Myoungsoo;Jang, Keunchang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.208-220
    • /
    • 2016
  • Automatic Mountain Meteorology Observation System (AMOS) is an important ingredient for several climatological and forest disaster prediction studies. In this study, we select the optimal sites for AMOS in the mountain areas of Honam and Jeju in order to prevent forest disasters such as forest fires and landslides. So, this study used spatial dataset such as national forest map, forest roads, hiking trails and 30m DEM(Digital Elevation Model) as well as forest risk map(forest fire and landslide), national AWS information to extract optimal site selection of AMOS. Technical methods for optimal site selection of the AMOS was the firstly used multifractal model, IDW interpolation, spatial redundancy for 2.5km AWS buffering analysis, and 200m buffering analysis by using ArcGIS. Secondly, optimal sites selected by spatial analysis were estimated site accessibility, observatory environment of solar power and wireless communication through field survey. The threshold score for the final selection of the sites have to be higher than 70 points in the field assessment. In the result, a total of 159 polygons in national forest map were extracted by the spatial analysis and a total of 64 secondary candidate sites were selected for the ridge and the top of the area using Google Earth. Finally, a total of 26 optimal sites were selected by quantitative assessment based on field survey. Our selection criteria will serve for the establishment of the AMOS network for the best observations of weather conditions in the national forests. The effective observation network may enhance the mountain weather observations, which leads to accurate prediction of forest disasters.