• 제목/요약/키워드: Fire resistance rating

검색결과 16건 처리시간 0.084초

내화피복 강재의 내화성능 평가 예측에 관한 연구

  • 성시창
    • 방재기술
    • /
    • 통권17호
    • /
    • pp.5-9
    • /
    • 1994
  • With a rapid development of economy, more high-rise buildings are being constructed in large cities than before. As a result steel members such as beams, columns make a great role of the building construction, and the need of them to be protected to have enough fire resistance is in-creasing . But conducting a real fire test to all the members is almost impossible. So prior to do conduct a real fire test of the protected steel members, evaluating the fire resistant rating of them by means of their specific properties might be economical things. This study is aimed to introduce the fire resistant rating of protected steel members without a real fire test through the related studies and data.

  • PDF

Prediction of response of reinforced concrete frames exposed to fire

  • Balaji, Aneesha;Muhamed Luquman, K.;Nagarajanb, Praveen;Pillai, T.M. Madhavan
    • Advances in Computational Design
    • /
    • 제1권1호
    • /
    • pp.105-117
    • /
    • 2016
  • The objective of this work is to study the restraining effect in fire resistance of framed structures and to evaluate the global response of reinforced concrete frames when exposed to fire based on advanced finite element method. To study the response a single portal frame is analyzed. The effect of floor slab on this frame is studied by modeling a beam-column-slab assembly. The evolution of temperature distribution, internal stresses and deformations of the frame subjected to ISO 834 standard fire curve for both the frames are studied. The thermal and structural responses are evaluated and a comparison of results of individual members and entire structure is done. From the study it can be seen that restraining forces has significant influence on both stresses and deflection and overall response of the structure when compared to individual structural member. Among the various structural elements, columns are the critical members in fire and failure of column causes the failure of entire structure. The fire rating of various structural elements of the frame is determined by various failure criteria and is compared with IS456 2000 tabulated fire rating.

Numerical analysis of simply supported two-way reinforced concrete slabs under fire

  • Wenjun Wang;Binhui Jiang;Fa-xing Ding;Zhiwu Yu
    • Computers and Concrete
    • /
    • 제31권6호
    • /
    • pp.469-484
    • /
    • 2023
  • The response mechanism of simply supported two-way reinforced concrete (RC) slabs under fire was numerically studied from the view of stress redistribution using the finite element software ABAQUS. Results show that: (1) Simply supported two-way RC slabs undergo intense stress redistribution, and their responses show four stages, namely elastic, elastic-plastic, plastic and tensile membrane stages. There is no cracking in the fire area of the slabs until the tensile membrane stage. (2) The inverted arch effect and tensile membrane effect improve the fire resistance of the two-way slabs. When the deflection is L/20, the slab is in an inverted arch effect state, and the slab still has a good deflection reserve. The deformation rate of the slab in the tensile membrane stage is smaller than that in the elastic-plastic and plastic stages. (3) Fire resistance of square slabs is better than that of rectangular slabs. Besides, increasing the reinforcement ratio or slab thickness improves the fire resistance of the slabs. However, an increase of cover thickness has little effect on the fire resistance of two-way slabs. (4) Compared with one-way slabs, the time for two-way slabs to enter the plastic and tensile cracking stage is postponed, and the deformation rate in the plastic and tensile cracking stage is also slowed down. (5) The simply supported two-way RC slabs can satisfy with the requirements of a class I fire resistance rating of 90 min without additional fire protection.

Synthesizing and Assessing Fire-Resistant Geopolymer from Rejected Fly Ash

  • An, Eung-Mo;Cho, Young-Hoon;Chon, Chul-Min;Lee, Dong-Gyu;Lee, Sujeong
    • 한국세라믹학회지
    • /
    • 제52권4호
    • /
    • pp.253-263
    • /
    • 2015
  • Ordinary Portland cement is a widely favored construction material because of its good strength and durability and its reasonable price; however, spalling behaviour during fire exposure can be a serious risk that can lead to strength degradation or collapse of a building. Geopolymers, which can be synthesized by mixing aluminosilicate source materials such as metakaolin and fly ash, and alkali activators, are resistant to fire. Because the chemical composition of geopolymers controls the properties of the geopolyers, geopolymers with various Si:Al ratios were synthesized and evaluated as fire resistant construction materials. Rejected fly ash generated from a power plant was quantitatively analyzed and mixed with alkali activators to produce geopolymers having Si:Al ratios of 1.5, 2.0, and 3.5. Compressive strength of the geopolymers was measured at 28 days before and after heating at $900^{\circ}C$. Geopolymers having an Si:Al ratio of 1.5 presented the best fire resistance, with a 44% increase of strength from 29 MPa to 41 MPa after heating. This material also showed the least expansion-shrinkage characteristics. Geopolymer mortar developed no spalling and presented more than a 2 h fire resistance rating at $1,050^{\circ}C$ during the fire testing, with a cold side temperature of $74^{\circ}C$. Geopolymers have high potential as a fire resistant construction material in terms of their increased strength after exposure to fire.

Fire resistance and residual strength of reactive powder concrete Using metakaolin

  • Jang, Hongseok;Yi, Jebang;So, Seungyoung
    • Steel and Composite Structures
    • /
    • 재36권6호
    • /
    • pp.657-669
    • /
    • 2020
  • This study investigates the fire resistance characteristics of reactive powder concrete according to changes in the cement content per unit area, mixing ratio of metakaolin (MK), and content of polypropylene fiber. A fire test was conducted, and the resulting residual strength characteristics were investigated through flexural and compressive strength measurements, as well as condition rating classification based on visual evaluation. MK effectively reduced the initial high content of calcium hydroxide, thereby reducing the water vapor pressure generated during pyrolysis and slowing spalling. Furthermore, the pore structure and loose tissue were effective for relieving the water vapor pressure in the event of a fire.

Modifications to fire resistance ratings of steel frames based on structural configuration: A probabilistic-based approach

  • Behnam, Behrouz
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.661-672
    • /
    • 2021
  • In this article, the role of spans number and length in fire-resistance ratings (FRRs) of fireproofed steel frames are investigated. First, over a span-lengthening scenario, two one- and three-bay frames under the ISO834 fire are examined. It is shown that the FRRs of the frames rely highly on the changes made on their span length. Second, a building designed for three spans number of three, four, and five under natural fire is investigated. The beams are designed for two load-capacity-ratios (LCRs) of optimum and ultimate. The fire curves are determined through a probabilistic-based approach. It is shown that the structural vulnerability vastly increases while the number of spans decreases. The results show that for an optimum LCR, while the five-span frame can meet the required FRR in 87% of the fire scenarios, the four- and three-span frames can meet the required FRR in only 56%, and 50% of the fire scenarios, respectively. For an ultimate LCR, the five-, four- and three-span frames can meet the required FRR in 81%, 50%, and 37.5% of the fire scenarios, respectively. Functional solutions are then proposed to resolve the insufficiencies in the results and to rectify the application of the standard-based FRRs in the cases studied. The study here highlights how employing current standard-based FRRs can endanger structural safety if they are not connected to structural characteristics; a crucial hint specifically for the structural engineering community who may be not well familiar with the fundamentals of performance-based approaches.

신형상 U형 하이브리드 합성보의 내화성능에 관한 연구 (Fire Resistance of U-shape Hybrid Composite Beam)

  • 김성배;김상섭;유덕수;최승관
    • 한국강구조학회 논문집
    • /
    • 제25권4호
    • /
    • pp.379-388
    • /
    • 2013
  • 본 연구에서는 신형상 U형 하이브리드 합성보의 내화성능평가를 실시하였다. 내화성능평가는 세라믹계의 뿜칠재와 내화페인트로 구분하여 내화시험을 수행하였다. 시험 변수는 피복재의 종류(뿜칠재와 페인트)와 내화시간(2시간, 3시간), 하중가력 유무(재하와 비재하), 뿜칠재 두께 등이다. 내화성능평가 합성보는 기존 철골보로 인정을 받은 제품에 비해 내화성능이 향상되는 것을 확인할 수 있다. 그러나 내화성능 향상에 대한 정량적인 평가는 합성보 형상과 관련한 다양한 변수가 조합되므로 지속적인 검토가 필요할 것으로 판단된다.

복합스터드에 경량기포모르터를 충전한 내력벽체의 내화성능 비교연구 (Fire Resistance Performance of Load Bearing Hybrid Panel Infilled with Light-weight Formed Mortar)

  • 박금성;배규웅;강현식;임서형
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권2호
    • /
    • pp.109-116
    • /
    • 2007
  • 본 논문의 목적은 경량기포모르터를 충전한 스틸스터드와 복합스터드 내력벽체의 내화성능을 KS규준에 따라 평가하는데 있다. 주거용과 상업용 건물의 최소 내화 요구시간은 2시간이다. 시험 결과로부터 스틸 스터드와 복합스터드에 경량기포 모르터를 충전한 두 시험체 모두 2시간 내화 성능을 만족하는 것으로 나타났다. 또한 복합스터드 패널 시험체의 경우 내화 성능면에서 스틸 스터드 패널 시험체 보다 우수하다는 것을 정량적 평가하였다.

Thermo-mechanical analysis of reinforced concrete slab using different fire models

  • Suljevic, Samir;Medic, Senad;Hrasnica, Mustafa
    • Coupled systems mechanics
    • /
    • 제9권2호
    • /
    • pp.163-182
    • /
    • 2020
  • Coupled thermo-mechanical analysis of reinforced concrete slab at elevated temperatures from a fire accounting for nonlinear thermal parameters is carried out. The main focus of the paper is put on a one-way continuous reinforced concrete slab exposed to fire from the single (bottom) side as the most typical working condition under fire loading. Although contemporary techniques alongside the fire protection measures are in constant development, in most cases it is not possible to avoid the material deterioration particularly nearby the exposed surface from a fire. Thereby the structural fire resistance of reinforced concrete slabs is mostly influenced by a relative distance between reinforcement and the exposed surface. A parametric study with variable concrete cover ranging from 15 mm to 35 mm is performed. As the first part of a one-way coupled thermo-mechanical analysis, transient nonlinear heat transfer analysis is performed by applying the net heat flux on the exposed surface. The solution of proposed heat analysis is obtained at certain time steps of interest by α-method using the explicit Euler time-integration scheme. Spatial discretization is done by the finite element method using a 1D 2-noded truss element with the temperature nodal values as unknowns. The obtained results in terms of temperature field inside the element are compared with available numerical and experimental results. A high level of agreement can be observed, implying the proposed model capable of describing the temperature field during a fire. Accompanying thermal analysis, mechanical analysis is performed in two ways. Firstly, using the guidelines given in Eurocode 2 - Part 1-2 resulting in the fire resistance rating for the aforementioned concrete cover values. The second way is a fully numerical coupled analysis carried out in general-purpose finite element software DIANA FEA. Both approaches indicate structural fire behavior similar to those observed in large-scale fire tests.

자동 스프링클러로 보호된 창의 내화 성능 평가에 관한 연구 (The Evaluation of Fire Endurance of Glazing Systems with Automatic Sprinklers)

  • 이창섭;장석화;김홍;정기창
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1998년도 추계학술발표회 논문 초록집
    • /
    • pp.73-76
    • /
    • 1998
  • To use glazing systems protected by automatic sprinklers as fire barriers in building compartmentation, fire endurance tests of these systems have been performed by several research workers. Most of the tests concerned the types of glasses and sprinklers, sprinkler water flow rate, and sprinkler activation time. Horizontal side wall sprinklers and window glazing systems with a vertical center mullion were mainly applied in the tests. In the study, full-scale fire endurance tests were carried out to verify the ability of large glazing systems divided by a horizontal mullion and protected by pendent vertical sprinklers. The result shows that the protrusive length of the horizontal mullion, which is perpendicular to the glass surface, is the main parameter that determines the fire resistance rating of the systems. The mullion obstructs the water flow in the glass.

  • PDF