• Title/Summary/Keyword: Fire resistance modeling

Search Result 18, Processing Time 0.021 seconds

On modeling of fire resistance tests on concrete and reinforced-concrete structures

  • Ibrahimbegovic, Adnan;Boulkertous, Amor;Davenne, Luc;Muhasilovic, Medzid;Pokrklic, Ahmed
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.285-301
    • /
    • 2010
  • In this work we first review the statistical data on large fires in urban areas, presenting a detailed list of causes of fires, the type of damage to concrete and reinforced concrete structures. We also present the modern experimental approach for studying the fire-resistance of different structural components, along with the role of numerical modeling to provide more detailed information on quantifying the temperature and heat flux fields. In the last part of this work we provide the refined models for assessment of fire-induced damage in structures built of concrete and/or reinforced-concrete. We show that the refined models of this kind are needed to provide a more thorough explanation of damage and to complete the damage assessment and post-fire evaluations.

A Evaluation of Fire Behavior According to Member Thickness of Precast Prestressed Hollow Core Slab of Fire Resistance Section (프리캐스트 프리스트레스트 내화단면 중공슬래브의 부재두께에 따른 화재거동평가 )

  • Yoon-Seob Boo;Kyu-Woong Bae;Sang-Min Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • At construction sites, interest in the production of precast materials is increasing due to off-site conditions due to changes in construction site conditions due to increased labor costs and the Act on the Punishment of Serious Accidents. In particular, the precast prestressed hollow slab has a hollow shape in the cross section, so structural performance is secured by reducing weight and controlling deflection through stranded wires. With the application of structural standards, the urgency of securing fire resistance performance is emerging. In this study, a fire-resistance cross section was developed by reducing the concrete filling rate in the cross section and improving the upper and lower flange shapes by optimizing the hollow shape in the cross section of the slab to have the same or better structural performance and economic efficiency compared to the existing hollow slab. The PC hollow slab to which this was applied was subjected to a two-hour fire resistance test using the cross-sectional thickness as a variable, and as a result of the test, fire resistance performance (load bearing capacity, heat shielding property, flame retardance property) was secured. Based on the experimental results, it is determined that fire resistance modeling can be established through numerical analysis simulation, and prediction of fire resistance analysis is possible according to the change of the cross-sectional shape in the future.

Heat Transfer Modeling of Fiber-embedded Fire-Resistant High Strength Concrete (섬유혼입 내화 고강도 콘크리트의 열전달 모델)

  • Shin, Young-Sub;Han, Tong-Seok;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 2011
  • High strength concrete used for large structures is vulnerable to fire due to explosive spalling when it is heated. Recently, various research is conducted to enhance the fire-resistance of the high strength concrete by reducing the explosive spalling at the elevated temperature. In this study, a heat transfer analysis model is proposed for a fiber-embedded fire-resistant high strength concrete. The material model of the fire-resistant high strength concrete is selected from the calibrated material model of a high strength concrete incorporating thermal properties of fibers and physical behavior of internal concrete at the elevated temperature. By comparing the simulated results using the calibrated model with the experimental results, the heat transfer model of the fiber-embedded fire-resistant high strength concrete is proposed.

Fire resistance prediction of slim-floor asymmetric steel beams using single hidden layer ANN models that employ multiple activation functions

  • Asteris, Panagiotis G.;Maraveas, Chrysanthos;Chountalas, Athanasios T.;Sophianopoulos, Dimitrios S.;Alam, Naveed
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.769-788
    • /
    • 2022
  • In this paper a mathematical model for the prediction of the fire resistance of slim-floor steel beams based on an Artificial Neural Network modeling procedure is presented. The artificial neural network models are trained and tested using an analytical database compiled for this purpose from analytical results based on FEM. The proposed model was selected as the optimum from a plethora of alternatives, employing different activation functions in the context of Artificial Neural Network technique. The performance of the developed model was compared against analytical results, employing several performance indices. It was found that the proposed model achieves remarkably improved predictions of the fire resistance of slim-floor steel beams. Moreover, based on the optimum developed AN model a closed-form equation for the estimation of fire resistance is derived, which can prove a useful tool for researchers and engineers, while at the same time can effectively support the teaching of this subject at an academic level.

A Study on the Investigation of Users Guide of One-Way Coupled Analysis for Performance-Based Structural Fire Resistance Design (성능기반 구조내화설계를 위한 단방향 연성해석 사용자가이드 조사에 관한 연구)

  • Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.96-97
    • /
    • 2021
  • In the Building Act, performance-based fire safety design is being promoted for institutionalization. The behavior of the structure against fire conditions can be predicted by using the advanced numerical analysis method based on the FEM (Finite Element Method) to predict the entire structural behavior including the behavior of the structure, but there is a limit to expressing the fire properties of the space and predicting the fire properties It is difficult to determine the variables to be transmitted to the FEM (Finite Element Method) model from the fire simulation results using FDS (Fire Dynamics Simulator). Accordingly, the purpose of this study is to introduce the code user's manual for FDS and FEM unidirectional coupling analysis.

  • PDF

Evaluation on Sensitivity and Approximate Modeling of Fire-Resistance Performance for A60 Class Deck Penetration Piece Using Heat-Transfer Analysis and Fire Test

  • Park, Woo Chang;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.141-149
    • /
    • 2021
  • The A60 class deck penetration piece is a fire-resistance apparatus installed on the deck compartment to protect lives and to prevent flame diffusion in the case of a fire accident in a ship or offshore plant. In this study, the sensitivity of the fire-resistance performance and approximation characteristics for the A60 class penetration piece was evaluated by conducting a transient heat-transfer analysis and fire test. The transient heat-transfer analysis was conducted to evaluate the fire-resistance design of the A60 class deck penetration piece, and the analysis results were verified via the fire test. The penetration-piece length, diameter, material type, and insulation density were used as the design factors (DFs), and the output responses were the weight, temperature, cost, and productivity. The quantitative effects of each DF on the output responses were evaluated using the design-of-experiments method. Additionally, an optimum design case was identified to minimize the weight of the A60 class deck penetration piece while satisfying the allowable limits of the output responses. According to the design-of-experiments results, various approximate models, e.g., a Kriging model, the response surface method, and a radial basis function-based neural network (RBFN), were generated. The design-of-experiments results were verified by the approximation results. It was concluded that among the approximate models, the RBFN was able to explore the design space of the A60 class deck penetration piece with the highest accuracy.

Efficiency of insulation layers in fire protection of FRP-confined RC columns-numerical study

  • El-Mahdya, Osama O.;Hamdy, Gehan A.;Hisham, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.673-689
    • /
    • 2021
  • This paper addresses the efficiency of thermal insulation layers applied to protect structural elements strengthened by fiber-reinforced polymers (FRP) in the case of fire event. The paper presents numerical modeling and nonlinear analysis of reinforced concrete (RC) columns externally strengthened by FRP and protected by thermal insulation layers when subjected to elevated temperature specified by standard fire tests, in order to predict their residual capacity and fire endurance. The adopted numerical approach uses commercial software includes heat transfer, variation of thermal and mechanical properties of concrete, steel reinforcement, FRP and insulation material with elevated temperature. The numerical results show good agreement with published results of full-scale fire tests. A parametric study was conducted to investigate the influence of several variables on the structural response and residual capacity of insulated FRP-confined columns loaded by service loads when exposed to fire. The residual capacity of FRP-confined RC column was affected by concrete grade and insulation material and was shown to improve substantially by increasing the concrete cover and insulation layer thickness. By increasing the VG insulation layer thickness 15, 32, 44, 57 mm, the loss in column capacity after 5 hours of fire was 30%, 13%, 7% and 5%, respectively. The obtained results demonstrate the validity of the presented approach for estimation of fire endurance and residual strength, as an alternative for fire testing, and for design of fire protection layers for FRP-confined RC columns.

Numerical study on fire resistance of cyclically-damaged steel-concrete composite beam-to-column joints

  • Ye, Zhongnan;Heidarpour, Amin;Jiang, Shouchao;Li, Yingchao;Li, Guoqiang
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.673-688
    • /
    • 2022
  • Post-earthquake fire is a major threat since most structures are designed allowing some damage during strong earthquakes, which will expose a more vulnerable structure to post-earthquake fire compared to an intact structure. A series of experimental research on steel-concrete composite beam-to-column joints subjected to fire after cyclic loading has been carried out and a clear reduction of fire resistance due to the partial damage caused by cyclic loading was observed. In this paper, by using ABAQUS a robust finite element model is developed for exploring the performance of steel-concrete composite joints in post-earthquake fire scenarios. After validation of these models with the previously conducted experimental results, a comprehensive numerical analysis is performed, allowing influential parameters affecting the post-earthquake fire behavior of the steel-concrete composite joints to be identified. Specifically, the level of pre-damage induced by cyclic loading is regraded to deteriorate mechanical and thermal properties of concrete, material properties of steel, and thickness of the fire protection layer. It is found that the ultimate temperature of the joint is affected by the load ratio while fire-resistant duration is relevant to the heating rate, both of which change due to the damage induced by the cyclic loading.

Prediction of response of reinforced concrete frames exposed to fire

  • Balaji, Aneesha;Muhamed Luquman, K.;Nagarajanb, Praveen;Pillai, T.M. Madhavan
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.105-117
    • /
    • 2016
  • The objective of this work is to study the restraining effect in fire resistance of framed structures and to evaluate the global response of reinforced concrete frames when exposed to fire based on advanced finite element method. To study the response a single portal frame is analyzed. The effect of floor slab on this frame is studied by modeling a beam-column-slab assembly. The evolution of temperature distribution, internal stresses and deformations of the frame subjected to ISO 834 standard fire curve for both the frames are studied. The thermal and structural responses are evaluated and a comparison of results of individual members and entire structure is done. From the study it can be seen that restraining forces has significant influence on both stresses and deflection and overall response of the structure when compared to individual structural member. Among the various structural elements, columns are the critical members in fire and failure of column causes the failure of entire structure. The fire rating of various structural elements of the frame is determined by various failure criteria and is compared with IS456 2000 tabulated fire rating.

A numerical method for evaluating fire performance of prestressed concrete T bridge girders

  • Zhang, Gang;Kodur, Venkatesh;Song, Chaojie;Hou, Wei;He, Shuanhai
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.497-507
    • /
    • 2020
  • This paper presents a numerical method for evaluating fire performance of prestressed concrete (PC) T shaped bridge girders under combined effect of structural loading and hydrocarbon fire exposure conditions. A numerical model, developed using the computer program ANSYS, is employed to investigate fire response of PC T shaped bridge girders by taking into consideration structural inherent parameters, namely; arrangement of prestressing strands with in the girder section, thickness of concrete cover over prestressing strands, effective degree of prestress and content of prestressing strands. Then, a sequential thermo-mechanical analysis is performed to predict cross sectional temperature followed by mechanical response of T shaped bridge girders. The validity of the numerical model is established by comparing temperatures, deflections and failure time generated from fire tests. Through numerical studies, it is shown that thickness of concrete cover and arrangement of prestressing strands in girder section have significant influence on the fire resistance of PC T shaped bridge girders. Increase in effective degree of prestress in strands with triangular shaped layout and content in prestressing strands can slow down the progression of deflections in PC T shaped bridge girder towards the final stages of fire exposure, to thereby preventing sudden collapse of the girder. Rate of deflection based failure criterion governs failure in PC T shaped bridge girders under most hydrocarbon fire exposure conditions. Structural inherent parameters incorporated into sectional configuration can significantly enhance fire resistance of PC bridge girders; thus mitigating fire induced collapse of these bridge girders.