• Title/Summary/Keyword: Fire patterns

Search Result 230, Processing Time 0.029 seconds

Fire Patterns Based on the Hb-CO Concentration (헤모글로빈-일산화탄소 농도에 따른 연소형태)

  • Choi, Seung-Bok;Oh, Bu-Yeol;Choi, Don-Mook
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.373-377
    • /
    • 2011
  • Fire patterns have been used to determine the origin and cause of fires in every setting imaginable. However, it is very difficult to identify fire patterns from the fire-damaged remains of a devastated structure. If someone was killed by the fire, it is possible to identify fire patterns by analyzing the concentration of carbon monoxide-hemoglobin in the body of deceased as well as the pace of the fire. For example, a low level of carbon monoxide-hemoglobin in the body of the dead indicates a rapid fire with accelerants and the death was caused by severe heat and thick toxic fumes. However, a high level of carbon monoxide-hemoglobin in the body of the dead demonstrates that the fire was slow and/or there was a flameless form of combustion. Thus, this study identifies fire patterns through analyzing the level of carbon monoxide-hemoglobin concentration on the dead from the fire.

  • PDF

Fire Patterns According to the Blood Hb-CO Concentration of Charred Bodies (소사체의 혈중 헤모글로빈-일산화탄소 농도에 따른 연소형태 연구)

  • Choi, Seung-Bok;Oh, Bu-Yeol;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.40-48
    • /
    • 2012
  • Fire patterns have been used to determine the origin and cause of fires in every setting imaginable. However, it is very difficult to identify fire patterns and causes from the fire-damaged remains of a devastated structure. If someone was killed by the fire, it is possible to identify fire patterns by analyzing the Hb-CO concentration in charred bodies of deceased as well as the pace of the fire. For example, a low level of Hb-CO concentration in the charred bodies indicate a rapid fire with accelerants and the death was caused by severe heat and thick toxic fumes. However, a high level of Hb-CO concentration in the charred bodies demonstrates that the fire was slow and/or there was a flameless form of combustion. Thus, it is possible to identify fire patterns through analyzing the level of Hb-CO concentration on the dead from the fire. In this study, the Hb-CO concentration in the charred bodies was from 3 % at the case of gas burning oneself to death to 93 % at the death caused by smoldering fire.

Spatial Patterns of Forest Fires between 1991 and 2007 (1991년부터 2007년까지 산불의 공간적 특성)

  • Lee, Byung-Doo;Lee, Myung-Bo
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • For the effective management of forest fire, understanding of regional forest fire patterns is needed. In this paper, forest fire ignition and spread characteristics were analyzed based on forest fire statistics. Fire occurrences, burned area, rate of spread, and burned area per fire between 1991 and 2007 were parameterized for the cluster analysis, which results were displayed using GIS to detect spatial patterns of forest fire. Administrative districts such as cities and counties were classified into 5 clusters by fire susceptibility. Metropolitan areas had fire characteristics that were infrequent, slow rate of spread, and small burned area. However, 4 cities and counties showing fast rate of spread, and large burned area, in the eastern regions of Taeback Mountain range, were the most susceptible areas to forest fire. The next vulnerable cities and counties were located in the West and South Coast area.

A Study on the Discrimination of Fire Pattern by the Phenomenological Observation (Focused on the Fire Cases) (현상학적 관찰에 의한 연소패턴의 식별에 관한 연구(사례를 중심으로))

  • Choi, Don-Mook;Choi, Sung-Bok;Choi, Jae-Soung
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.98-110
    • /
    • 2009
  • The burned patterns of fire are changed very diversely according to the direction of wind, conditions of combustibles, shape of buildings and so on in the fire scenes. And careful attentions are required on the determining of ignition point and fire causes. In this study, we examined that the burned pattern of fuel controlled fires and ventilation controled fires that impose a heavy burden on fire investigators, carbonized marks of floor, formed by flammable liquids, and combustion marks of falling firing materials through the fire cases. We suggest a proper fire investigation method.

The fire patterns of vinyl and rubber cords shorted by external flame (외부화염에 의해 단락된 비닐코드 및 고무코드의 화재 패턴)

  • Kim, Dong-Woo;Shong, Kil-Mok;Kim, Dong-Ook;Kim, Young-Seok;Choi, Chung-Seog
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1655-1657
    • /
    • 2004
  • The electrical fire frequently happens through carelessness of a vinyl and rubber cords such as a poor contact, a mechanical stress and so on. Electrical fire occupies the greater part(about 30%) of all fires in Korea. In this paper, we compared to the fire dispersive patterns of vinyl and rubber cords according to the external flame in the wall-model. The fire progress and dispersive patterns were measured by a high speed imaging system(HG-100K, REDLAKE, USA). From the results, short-circuit of the vinyl cords are easy to happen than the rubber cords by the external flame. The pattern of fire was progressed a flashover, scattering and disconnection. The fire progress on the vinyl cord is not observed because the ignition energy decreases. However, the fire was progressed continuously on the rubber cord.

  • PDF

Effects of Geological Structure and Tree Density on the Forest Fire Patterns (지형구조와 나무밀도가 산불패턴에 미치는 영향)

  • Song, Hark-Soo;Kwon, Oh Sung;Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.259-266
    • /
    • 2014
  • Understanding the forest fire patterns is necessary to comprehend the stability of the forest ecosystems. Thus, researchers have suggested the simulation models to mimic the forest fire spread dynamics, which enables us to predict the forest damage in the scenarios that are difficult to be experimentally tested in laboratory scale. However, many of the models have the limitation that many of them did not consider the complicated environmental factors, such as fuel types, wind, and moisture. In this study, we suggested a simple model with the factors, especially, the geomorphological structure of the forest and two types of fuel. The two fuels correspond to susceptible tree and resistant tree with different probabilities of transferring fire. The trees were randomly distributed in simulation space at densities ranging from 0.5 (low) to 1.0 (high). The susceptible tree had higher value of the probability than the resistant tree. Based on the number of burnt trees, we then carried out the sensitivity analysis to quantify how the forest fire patterns are affected by the structure and tree density. We believe that our model can be a useful tool to explore forest fire spreading patterns.

A Study on Improvement of Fire Service Deployment Standard in Korea (한국 소방력배치 기준의 개선에 관한 연구)

  • Lee, Hae-Pyeong;Back, Min-Ho
    • Fire Science and Engineering
    • /
    • v.20 no.1 s.61
    • /
    • pp.28-42
    • /
    • 2006
  • The purpose of this study is to offer the improvement for deployment of fire service force in Korea by settlement patterns on the basis of analysis for the present standard and deployment of fire service force. For the adequate deployment and operation of fire service force by settlement patterns, we carried out the analysis of the present standard calculated with allocation of the authorized strength. We also classified clusters for settlement pattern through the statistical methods. We proposed the standard for deployment of fire service force reflected with environmental and need factors through the introduction of standardized index.

Study on the Fire Investigation by Damaged Pattern Analysis of Incandescent Lamps (백열전구의 소손 패턴 분석을 통한 화재조사 연구)

  • Kim, Hyang-Kon;Kim, Dong-Woo;Moon, Hyun-Wook;Choi, Chung-Seog;Choi, Hyo-Sang
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.22-28
    • /
    • 2008
  • In this paper, we conducted experiments on damaged patterns of incandescent lamps by external stress, such as external flame or external impact. Glass bulbs were melted and filaments were evaporated by external flame when the bulbs were lit, and finally molten marks were recognized at the filaments. Also, there were some differences in absorption patterns of evaporated filament elements according to set-up directions, and evaporated filament elements were absorbed in lead-in wires, support, inside of glass. In case the bulbs were lit and they were damaged by external impacts, filament burned out. Filaments were not evaporated but melted. We expect that this results could be used to judge whether electric current flew through incandescent lamps or not in fire site.

CROSS FLOW EFFECTS ON THE FLAME HEIGHT OF AN INTERMEDIATE SCALE DIFFUSION FLAME

  • Kolb, Gilles;Torero, Jose L.;Most, Jean-Michel;Joulain, Pierre
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.169-177
    • /
    • 1997
  • An experimental study has been conducted at an intermediate scale to study the effect of a cross flow on a purely buoyant fire. Video taping of the flame and post processing of the images by means of a novel technique provide a contour of a mean flame for all cases studied. This flame contour allows the determination of a mean flame length and a mean flame height. The mean flame length and height are recorded as functions of the forced flow velocity. Three dimensional flow patterns are formed in the flame trailing edge affecting both the mean flame length and height. The three dimensional patterns are studied systematically as functions of the cross flow velocity to quantify the effect of confinement on the flame geometry.

  • PDF

Analysis of Vertical Combustion and Carbonization Patterns of Floor Materials When Using a Needle Flame (니들 플레임에 의한 바닥재의 수직 연소 및 탄화 패턴의 해석에 관한 연구)

  • Park, Min-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.101-106
    • /
    • 2020
  • This study analyzed flame growth characteristics and carbonization patterns when floor materials were burned vertically using a needle flame produced for this study. It was found that PVC flooring was fire retardant and the area under direct flame contracted inward. Vertical combustion causes solidification in the form of a lump at the bottom and also generates soot in a pattern that progresses upwards. This study found that laminated flooring exhibited no fire retarding characteristics and that the laminated layer of its upper surface was destroyed by fire, causing irregular delamination. The carbonization ranges at the left and right sides were determined to be symmetrical. A vertical combustion test of a sample carpet showed that it exhibited no fire-retarding characteristics. It was observed that if heat accumulated in the carpet, the flame formed an ascending air current, and that when flammable materials were present around the flame, they further accelerated the diffusion of the flame. The carbonization pattern at the carpet surface exposed to direct flame revealed that the carpet surface had melted and had flown downwards and that many tiny holes formed on it.