• Title/Summary/Keyword: Fire pattern

Search Result 335, Processing Time 0.027 seconds

Fire-Flame Detection using Fuzzy Finite Automata (퍼지 유한상태 오토마타를 이용한 화재 불꽃 감지)

  • Ham, Sun-Jae;Ko, Byoung-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.9
    • /
    • pp.712-721
    • /
    • 2010
  • This paper proposes a new fire-flame detection method using probabilistic membership function of visual features and Fuzzy Finite Automata (FFA). First, moving regions are detected by analyzing the background subtraction and candidate flame regions then identified by applying flame color models. Since flame regions generally have continuous and an irregular pattern continuously, membership functions of variance of intensity, wavelet energy and motion orientation are generated and applied to FFA. Since FFA combines the capabilities of automata with fuzzy logic, it not only provides a systemic approach to handle uncertainty in computational systems, but also can handle continuous spaces. The proposed algorithm is successfully applied to various fire videos and shows a better detection performance when compared with other methods.

Fire-Smoke Detection Based on Video using Dynamic Bayesian Networks (동적 베이지안 네트워크를 이용한 동영상 기반의 화재연기감지)

  • Lee, In-Gyu;Ko, Byung-Chul;Nam, Jae-Yeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.388-396
    • /
    • 2009
  • This paper proposes a new fire-smoke detection method by using extracted features from camera images and pattern recognition technique. First, moving regions are detected by analyzing the frame difference between two consecutive images and generate candidate smoke regions by applying smoke color model. A smoke region generally has a few characteristics such as similar color, simple texture and upward motion. From these characteristics, we extract brightness, wavelet high frequency and motion vector as features. Also probability density functions of three features are generated using training data. Probabilistic models of smoke region are then applied to observation nodes of our proposed Dynamic Bayesian Networks (DBN) for considering time continuity. The proposed algorithm was successfully applied to various fire-smoke tasks not only forest smokes but also real-world smokes and showed better detection performance than previous method.

Numerical Analysis on Flow Characteristics in the Pressurized Air Supply Smoke Control System (급기가압 제연설비의 내부 유동특성에 대한 수치해석)

  • Ko, Gwon-Hyun
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.52-58
    • /
    • 2017
  • This study investigated the pressure difference distribution and the flow characteristics among room, ancillary room, and stair case by carrying out the numerical simulations on the air flow inside the pressurized air supply smoke control system. Numerical simulations were conducted to analyze pressure and velocity distribution of compartments by pressurized air supply for the air-leakage test facility which was built to measure the effective leakage area. In this study, the leakage of air was considered by locating the narrow slit onto fire door and window of room. Simulated results using this method precisely followed the previous experimental results for the pressure differences between the stair case and ancillary room. Predicted results showed that the local leakage of air rarely affected the overall flow pattern and pressure distribution. Although the average velocity over the door between room and ancillary room satisfied the regulation for fire safety, it was certified the unsafe outflow to ancillary room could be occurred in the local position such as the upper part of the door.

Short-term Changes in Ant Communities after Forest Fire (산불 후 개미군집의 단기변화)

  • Lee, Cheol Min;Kwon, Tae-Sung
    • Korean journal of applied entomology
    • /
    • v.52 no.3
    • /
    • pp.205-213
    • /
    • 2013
  • Forest fires disturb communities of forest-dwelling insects by killing or dispersal. Species diversity, species composition, and functional guilds of ant communities will be changed following forest fires. A survey of ants was conducted to find changes in ant communities after a large fire occurred in Goseong within Gwangwon province in South Korea in 1996. In total, 1,308 ants representing 16 species were collected; 696 ants representing 15 species were collected at the burned site, and 612 ants representing 13 species were collected at the unburned site. Contrary to the general expectation which predicts a decrease of diversity and abundance after fire, abundance, species diversity, species composition, and functional guilds of ant communities did not differ between the burned site and the unburned site. Furthermore, estimated species richness was significantly higher at the burned site than at the unburned site. However, monthly occurrences of ants (abundant species and pooled) were different between the burned site and the unburned site. Ants were more abundant at the burned sites than the unburned site just after the fire (May 1996). However, they were more abundant at the unburned site than the burned site in autumn (September and October 1996). This phenomenon might be caused by environmental change (e.g., decrease of soil moisture). In conclusion, the fire did not significantly change ant fauna, as fire in spring cannot destroy ant colonies that are wintering in deep soils.

A Simulation Model for the Study on the Forest Fire Pattern (산불확산패턴 연구를 위한 시뮬레이션 모델)

  • Song, Hark-Soo;Jeon, Wonju;Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.101-107
    • /
    • 2013
  • Because forest fires are predicted to increase in severity and frequency under global climate change with important environmental implications, an understanding of fire dynamics is critical for mitigation of these negative effects. For the reason, researchers with different background, such as ecologists, physicists, and mathematical biologists, have developed the simulation models to mimic the forest fire spread patterns. In this study, we suggested a novel model considering the wind effect. Our theoretical forest was comprised of two different tree species with varying probabilities of transferring fire that were randomly distributed in space at densities ranging from 0.0 (low) to 1.0 (high). We then studied the distributional patterns of burnt trees using a two-dimensional stochastic cellular automata model with minimized local rules. We investigated the time, T, that the number of burnt trees reaches 25% of the whole trees for different values of the initial tree density, fire transition probability, and the degree of wind strength. Simulation results showed that the values of T decreased with the increase of tree density, and the wind effect decreased in the case of too high or low tree density. We believe that our model can be a useful tool to explore forest fire spreading patterns.

Effect of the HVAC Conditions on the Smoke Ventilation Performance and Habitability for a Main Control Room Fire in Nuclear Power Plant (원자력발전소 주제어실 화재 시 공조모드가 배연성능 및 거주성에 미치는 영향 분석)

  • Kim, Beom-Gyu;Lim, Heok-Soon;Lee, Young-Seung;Kim, Myung-Su
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.74-81
    • /
    • 2016
  • This study evaluated the habitability of operators for main control room fires in nuclear power plants. Fire modeling (FDS v.6.0) was utilized for a fire safety assessment so that it could determine the performance of the smoke ventilation and operator habitability with the main control room. For this study, it categorized fire scenarios into three cases depending on the conditions in the HVAC system. As a result of fire modelling, it showed that Case 1 (with HVAC) would give rise to the worst situation associated with the absolute temperature, radiative heat flux, optical density, and smoke layer height as deliberating the habitability and smoke ventilation. On the other hand, it showed that Cases 2 (w/o HVAC) and 3 can maintain much safer situations than Case 1. In the case of temperature at 820 s, Cases 2 and 3 were up to approximately 63% greater than Case 1 in the wake of ignition. In addition, the influence of radiative heat flux of Case 1 was even larger than Cases 2 and 3. That is, the radiative heat fluxes of Cases 2 and 3 were approximately 68% higher than Case 1. Furthermore, when it comes to considering the optical density, Case 1 was approximately 93% greater than Cases 2 and 3. Accordingly, it expected that the HVAC system can influence a the performance on the smoke ventilation that can be sustainable for operator habitability. On the other hand, it revealed an inconsecutive pattern for the smoke layer height of Cases 2 and 3 because supply vents and exhaust vents were installed within the same surface.

A study on the effect of gusty wind on smoke control performance in road tunnel (돌풍이 도로터널의 제연성능에 미치는 영향 연구)

  • Baek, Doo-San;Cho, Hyeon-Seok;Lee, Seung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.95-108
    • /
    • 2022
  • The increase in the use time of tunnel users due to the lengthening of the road tunnel may increase the evacuation time in case of fire, resulting in a large number of casualties. In order to reduce the casualties caused by fire, the "Road Tunnel Design Manual, Part 6 Tunnel" and "Road Tunnel Disaster Prevention Facility Installation and Management Guidelines" stipulate that ventilation facilities should be installed along with the extension of the tunnel. The ventilation system design factor considers the wind speed of the external natural wind to be at least 2.5 m/s, and it is applied upward according to the characteristics of the tunnel. As a result of analyzing the five-minute average wind speed data in the Daegwallyeong region for the past 6 years, it was analyzed that 15.8% of the windy days were winds of 10 m/s or more, and the maximum was 20 m/s. Therefore, in this study, when a fire occurs in a tunnel, the pattern of natural wind flowing into the tunnel and the backlayering distance of the tunnel fire smoke according to the maximum wind speed were analyzed. As a result, it was analyzed that a backflow of up to 490 m occurs when a gust of 20 m/s blows.

Discriminant Modeling for Pattern Identification Using the Korean Standard PI for Stroke-III (한국형 중풍변증 표준 III을 이용한 변증진단 판별모형)

  • Kang, Byoung-Kab;Ko, Mi-Mi;Lee, Ju-Ah;Park, Tae-Yong;Park, Yong-Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.6
    • /
    • pp.1113-1118
    • /
    • 2011
  • In this paper, when a physician make a diagnosis of the pattern identification (PI) in Korean stroke patients, the development methods of the PI classification function is considered by diagnostic questionnaire of the PI for stroke patients. Clinical data collected from 1,502 stroke patients who was identically diagnosed for the PI subtypes diagnosed by two physicians with more than 3 years experiences in 13 oriental medical hospitals. In order to develop the classification function into PI using Korean Stroke Syndrome Differentiation Standard was consist of the 44 items (Fire heat(19), Qi deficiency(11), Yin deficiency(7), Dampness-phlegm(7)). Using the 44 items, we took diagnostic and prediction accuracy rate through of discriminant model. The overall diagnostic and prediction accuracy rate of the PI subtypes for discriminant model was 74.37%, 70.88% respectively.

Method for High-visibility of Online Monitoring and Fault Diagnosis System for Industrial Motor using PVA (PVA를 이용한 산업용 모터 고장진단 모니터링 시스템의 가시성을 높이는 방법)

  • Goh, Yeong-Jin;Kang, In-Won
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • Industrial Motors diagnostic equipment is highly dependent on the automation system, so if there are defects in the automation equipment, it can only rely on the operator's intuitive judgment.To help with intuitive judgment, Park's Vactor Approach(PVA) represents the current signal as a pattern of circles, so it can tell if a fault occurs when the circle is distorted. However, the failure to judge the degree of distortion of the circle pattern is the basis of the fault, so it will face difficulties. In this paper, in order to compare the faults of PVA, the period of d-axis current of PVA pulsation was mastered, so that two phase differences occurred in the same signal source. Through experiments, it is confirmed that this is a 90 degree cross formation of PVA, which is convenient for judging from the vision that there is no fault, thus helping the operator to make intuitive judgment.

Weighting of Stroke Pattern Identification Using an AHP (AHP 기법을 이용한 중풍 변증지표의 가중치 설정)

  • Kang, Byoung-Kab;Kim, So-Yeon;Lee, Jung-Sup;Kim, No-Soo;Ko, Mi-Mi;Kwon, Se-Hyug;Bang, Ok-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.149-153
    • /
    • 2011
  • In this study, we structuralized the diagnostic indices used for pattern identification (PI) of stroke, and suggested an AHP method to obtain the weights of PI indices. AHP of the subjects under consistency ratio 0.1 showed that the critical indices for stroke PI consists of 9 for Qi-deficiency, 13 for Phlegm/dampness, 7 for blood stagnation, 12 for Yin-deficiency and 16 for Fire/heat. Furthermore, AHP analysis rendered the weights of indices of each PI that will be useful for oriental medical experts to perform objective PI.