• Title/Summary/Keyword: Fire occurrence

Search Result 431, Processing Time 0.029 seconds

A Study on Safety of Hydrogen Station (수소충전소의 안전성에 관한 연구)

  • Ko, Jae-Wook;Lee, Dae-Hee;Jung, In-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2009
  • A safety assessment was performed through the process analysis of hydrogen station. The purpose of this study provides basic information for the standard establishment about hydrogen stations. The processes of hydrogen stations were classified by four steps (process of manufacture, compression, storage, charge). FMEA (Failure Mode and Effect Analysis) method was applied to evaluate safety. Each risk element is following; S (severity), O (occurrence), D (detection). And the priority of order was decided by using RPN (Risk Priority Number) value multiplying three factors. Scenarios were generated based on FMEA results. And consequence analysis was practiced using PHAST program. In the result of C.A, jet fire and explosion were shown as accident types. In case of leakage of feed line in PSA process, concentration of CO gas is considered to prevent CO gas poisoning when the raw material that can product CO gas was used.

  • PDF

Development of a Tool for Predicting the Occurrence Time of BLEVE in Small LPG Storage Tanks (LPG소형저장탱크 BLEVE 발생 시점 예측 툴 개발)

  • Chae, Chung Keun;Lee, Jae Hun;Chae, Seung Been;Kim, Yong Gyu;Han, Shin Tak
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.74-83
    • /
    • 2020
  • In Korea, about 110,000 LPG small storage tanks of less than three tons have been installed in restaurants, houses and factories, and are used as LPG supply facilities for cooking, heating and industrial use. In the case of combustible liquefied gas storage tanks, the tank may rupture due to the temperature increase of the tank steel plate (approximately 600℃) even when the safety valve is operating normally, causing large-scale damage in an instant. Therefore, in the event of a fire near the LPG small storage tank, it is necessary to accurately predict the timing of the BLEVE(Boiling Liquid Expanding Vapour Explosion) outbreak in order to secure golden time for lifesaving and safely carry out fire extinguishing activities. In this study, we have first investigated the results of a prior study on the prediction of the occurrence of BLEVE in the horizontal tanks. And we have developed thermodynamic models and simulation program on the prediction of BLEVE that can be applied to vertical tanks used in Korea, have studied the effects of the safety valve's ability to vent, heat flux strength of external fires, size of tanks, and gas remaining in tanks on the time of BLEVE occurrence and have suggested future utilization measures.

Cause Analysis and Countermeasure of Tracking in Mobile Phone Charger (휴대폰 충전기 내 트래킹 발생 원인 분석 및 대책)

  • Park, Jin-Young;Kim, Jae-Hyun;Park, Kwang-Muk;Bang, Sun-Bae
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.71-77
    • /
    • 2016
  • The electrolyte of the capacitor in mobile phone chargers leaks to the power input terminal resulting in tracking on the PCB board to form a carbonized conductive path. As a result of structural analysis of the cause of the tracking, It occurred when the power input terminal and the PCB board were connected directly using the connector. The larger the amount of electrolyte leaked from the capacitor into the power input terminal, or the lower the height of the partition provided between the plug pins of the power input terminal, the higher the tracking occurrence rate. Accordingly, to lower the occurrence rate of tracking in the charger, it is necessary to provide a partition on the capacitor or increase the height of the partition provided on the power input terminal so that the leaked electrolyte does not flow to the power input terminal. In addition, the tracking occurrence rate will be reduced further if the shape of the PCB board touching ther power connection terminal is changed to ${\Pi}$.

Fire resistance assessment of high strength segment concrete depending on PET fiber amount under fire curves (화재곡선과 PET섬유 혼입량에 따른 고강도 세그먼트 콘크리트의 화재저항성 평가에 대한 연구)

  • Choi, Soon-Wook;Lee, Gyu-Phil;Chang, Soo-Ho;Park, Young-Taek;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.3
    • /
    • pp.311-320
    • /
    • 2014
  • High strength concrete is not only vulnerable to the occurrence of spalling which generates the loss of cross-section in concrete structures but produces faster degradation in its mechanical properties than normal strength concrete in the event of fire. This study aims to evaluate fire resistance of high strength segment concrete with PET fibers mixed to prevent spalling under ISO834 (2hr) and RABT fire curve. As results, the samples without PET fibers show the concrete loss up to the depth of about 8 cm and 9.5 cm from the surface exposed to fire under ISO834 and RABT fire curve respectively. The samples mixed with PET fiber of 0.1% show no spalling under ISO834 fire curve and the spalled thickness of 6.5 cm under RABT fire curve after the fire tests. Finally, the sample mixed with PET fiber of 0.2% shows no spalling under RABT fire curve. The results indicate that the suitable amounts of PET fiber for securing fire resistance performance of this high strength segment concrete are 0.1% under ISO834 fire curve and 0.2% under RABT fire curve. However, even though spalling does not occur, it is necessary to repair the deterioration of concrete up to 4 cm from the surface exposed to fire after fire.

The Risk Assessment of the Fire Occurrence According to Urban Facilities in Jinju-si (진주시 도시시설물별 화재발생 위험도 평가)

  • Bae, Gyu Han;Won, Tae Hong;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • Urbanization in Korea has increased significantly and subsequently, various facilities have been concentrated in urban areas at high speed in accordance with a growing urban population. Accordingly, damages have occurred due to a variety of disasters. In particular, fire damage among the social disasters caused the most severe damage in urban areas along with traffic accidents. 44,432 cases of fire occurred in 2015 in Korea. Due to these accidents, 253 were killed and property damage of 4,50 billion won was generated. However, despite the efforts to reduce a variety of damage, fire danger still remains high. In this regard, this study collected fire data, generated from 2007 to 2014 through the Jinju Fire Department and the National Fire Data System(NFDS) and calculated fire risk by analyzing the clustering of fire cases and facilities in Jinju-si based on the current DB of facilities, offered by the Ministry of Government Administration and Home Affairs. As a result, the risk ratings of fire occurrence were classified as four stages under the standards of the US Society of Fire Protection Engineers(SEPE). Business facilities, entertainment facilities, and automobile facilities were classified as the highest A grade, detached houses, Apartment houses, education facilities, sales facilities, accommodation, set of facilities, medical facilities, industrial facilities, and life service facilities were classified as U grade, and other facilities were classified as EU grade. Finally, hazardous production facilities were classified as BEU grade, the lowest grade. In addition, in the case of setting the standard with loss of life, the highest risk facility was the hazardous production facilities, while in the case of setting the standard with property damage, a set of facilities and industrial facilities showed the highest risk. In this regard, this study is expected to be effectively utilized to establish the fire reduction measures against facilities, distributed in urban space by calculating risk grades regarding the generation frequency, casualties, and property damage, through the classification of fire, occurred in the city, according to the facilities.

LSTM-based Fire and Odor Prediction Model for Edge System (엣지 시스템을 위한 LSTM 기반 화재 및 악취 예측 모델)

  • Youn, Joosang;Lee, TaeJin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Recently, various intelligent application services using artificial intelligence are being actively developed. In particular, research on artificial intelligence-based real-time prediction services is being actively conducted in the manufacturing industry, and the demand for artificial intelligence services that can detect and predict fire and odors is very high. However, most of the existing detection and prediction systems do not predict the occurrence of fires and odors, but rather provide detection services after occurrence. This is because AI-based prediction service technology is not applied in existing systems. In addition, fire prediction, odor detection and odor level prediction services are services with ultra-low delay characteristics. Therefore, in order to provide ultra-low-latency prediction service, edge computing technology is combined with artificial intelligence models, so that faster inference results can be applied to the field faster than the cloud is being developed. Therefore, in this paper, we propose an LSTM algorithm-based learning model that can be used for fire prediction and odor detection/prediction, which are most required in the manufacturing industry. In addition, the proposed learning model is designed to be implemented in edge devices, and it is proposed to receive real-time sensor data from the IoT terminal and apply this data to the inference model to predict fire and odor conditions in real time. The proposed model evaluated the prediction accuracy of the learning model through three performance indicators, and the evaluation result showed an average performance of over 90%.

A Study on Improvement of Fire-fighter's outfits and fire-fighting scenarios for effective water-extinguishment on ship (효과적인 선상 수소화를 위한 소방원 장구 및 화재진압 시나리오 개선에 관한 연구)

  • Sim, Hyo-Sang;Park, Young-Soo;Ha, Won-Jae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.100-102
    • /
    • 2016
  • Every crew are in great peril that they should put out a fire on board in person due to a property of ship isolated. Accordingly, it is essential to verify whether the fire-fighter's outfits and fire-fighting scenarios in accordance with present regulations are safe and effective actually. As a result of comparison between shore fire-fighter's outfits and fire-fighting scenarios and those on ship and statistics calculation of the place and frequency of the fire of actual ship, present limitations of fire suppression system and fire-fighter's outfits were proved. In addition, derive the distance to the place on ship that has highest frequency of fire occurrence from examining actual ship's drawings according to their description and size. Finally from experiments in more experimental groups by changing numbers of actual fire-fighters and environment and conduction of survey of a number of crew in active service on ship, the most effective fire-fighter's outfits system and fire-fighting scenarios will be derived.

  • PDF

Influence of the Combustion Flame on the Dielectric Strength of an Air Gap due to Fire Occurrence (화재발생에 따른 연소화염이 공기의 절연내력에 미치는 영항)

  • 김인식;하장호
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.30-38
    • /
    • 2002
  • Occurring fire or burning bushes beneath overhead power lines have caused system disturbances in many countries. In this study, various tests in the simulated condition of power lines were conducted so as to investigate the reduction in insulation strength caused by combustion flame. Characteristics of the ac and dc flashover voltages in the vertical needle-plane, sphere-plane and rod-plane electrode system were investigated when the combustion flames were present near the high-voltage electrode. As the results of an experimental investigation, It was found that the average reduction characteristics of flashover voltages with the sphere-plane system, in comparison with the no-flames case, were about 1/3 times when the ac voltages were applied.

Development of Prevention Apparatus for Short-Circuit Faults Using the Line Voltage Drop of Neutral Wire (중성선 선로 전압강하를 이용한 단락사고 방지용 보호장치 개발)

  • Kwak, Dong-Kurl;Kim, Jin-Hwan;Lee, Bong-Seob
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1953-1958
    • /
    • 2012
  • The major causes of electrical fire are classified to short circuit fault, overload fault, electric leakage and electric contact failure. The occurrence factor of the fire is electric arc or spark accompanied with such electric faults, specially short circuit faults. Earth Leakage Circuit Breaker (ELB) and Molded_case Circuit Breaker (MCCB), that is, Residual Current Protective Devices (RCDs) used on low voltage distribution lines cut off earth leakage and overload, but the RCD can not cut off electric arc or spark to be a major factor of electrical fire. As the RCDs which are applied in low voltage distribution panel are prescribed to rated breaking time about 30ms(KS C 4613), the RCDs can't perceive to the periodic electric arc or spark of more short wavelength level. To improve such problem, this paper proposes a prevention apparatus using the line voltage drop of neutral wire and some semiconductor switching devices. Some experimental tests of the proposed apparatus confirm the validity of the analytical results.

Regional Analysis of Forest Eire Occurrence Factors in Kangwon Province (강원도 지역 산불발생인자의 지역별 유형화)

  • 이시영;한상열;안상현;오정수;조명희;김명수
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2001
  • This study attempts to categorizes the factors of forest fire occurrences based on regional meteorologic data and general forest no characteristics of 18 cities and guns in Kangwon province. lo accomplish this goal, some statistical analyses such as analysis of variance, correspondence analysis and multidimensional scaling were adopted. To reveal the forest fires pattern of study region, a categorization process was conducted by employing the quantification approach which modified and quantified the metric-data of fire occurrence dates. Also, The fire occurrence similarity was compared by using multidimensional scaling for each study region. The major results are summarized as follows: It was found that the meteorological factors emerged as different to each region are average and maximum temperature, minimum dew point temperature and average and maximum wind speed. In the result of correspondence analysis representing relationships between fire causes and study regions, Kangrung is caused by arsonist, Chulwon, Hwachen and Yanggu caused by military factor, Sokcho and Chunchen caused by the debris burning, and Samchuk caused by general man-caused fires, respectively. Finally, the forest fire occurrence pattern of this study regions were divided into five areas such as, group I including Samchuk, Kangryung, Chunchen, Wonju, Hongchen and Hhoingsung, group II including Donghae, Taebaek, Yangyang and Pyongchang, group III including Jungsun, Chulwon and Whachen, group Ⅵ including Gosung, Injae and Yanggu, and group V including Shokcho and Youngwol.

  • PDF