• Title/Summary/Keyword: Fire localization

Search Result 17, Processing Time 0.025 seconds

Study on Modeling and Simulation for Fire Localization Using Bayesian Estimation (화원 위치 추정을 위한 베이시안 추정 기반의 모델링 및 시뮬레이션 연구)

  • Kim, Taewan;Kim, Soo Chan;Kim, Jong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.424-430
    • /
    • 2021
  • Fire localization is a key mission that must be preceded for an autonomous fire suppression system. Although studies using a variety of sensors for the localization are actively being conducted, the fire localization is still unfinished due to the high cost and low performance. This paper presents the modeling and simulation of the fire localization estimation using Bayesian estimation to determine the probabilistic location of the fire. To minimize the risk of fire accidents as well as the time and cost of preparing and executing live fire tests, a 40m × 40m-virtual space is created, where two ultraviolet sensors are simulated to rotate horizontally to collect ultraviolet signals. In addition, Bayesian estimation is executed to compute the probability of the fire location by considering both sensor errors and uncertainty under fire environments. For the validation of the proposed method, sixteen fires were simulated in different locations and evaluated by calculating the difference in distance between simulated and estimated fire locations. As a result, the proposed method demonstrates reliable outputs, showing that the error distribution tendency widens as the radial distance between the sensor and the fire increases.

A New Optimized Localized Technique of CG Return Stroke Lightning Channel in Forest

  • Kabir, Homayun;Kanesan, Jeevan;Reza, Ahmed Wasif;Ramiah, Harikrishnan;Dimyati, Kaharudin
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2356-2363
    • /
    • 2015
  • Localization of lightning strike point (LSP) in the forest is modeled to mitigate the forest fire damage. Though forest fire ignited by lightning rarely happens, its damage on the forest is grievousness. Therefore, predicting accurate location of LSP becomes crucial in order to control the forest fire. In this paper, we proposed a new hybrid localization algorithm by combining the received signal strength (RSS) and the received signal strength ratio (RSSR) to improve the accuracy by mitigating the environmental effect of lightning strike location in the forest. The proposed hybrid algorithm employs antenna theory (AT) model of cloud-to-ground (CG) return stroke lightning channel to forecast the location of the lightning strike. The obtained results show that the proposed hybrid algorithm achieves better location accuracy compared to the existing RSS method for predicting the lightning strike location considering additive white Gaussian noise (AWGN) environment.

WSN Lifetime Analysis: Intelligent UAV and Arc Selection Algorithm for Energy Conservation in Isolated Wireless Sensor Networks

  • Perumal, P.Shunmuga;Uthariaraj, V.Rhymend;Christo, V.R.Elgin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.901-920
    • /
    • 2015
  • Wireless Sensor Networks (WSNs) are widely used in geographically isolated applications like military border area monitoring, battle field surveillance, forest fire detection systems, etc. Uninterrupted power supply is not possible in isolated locations and hence sensor nodes live on their own battery power. Localization of sensor nodes in isolated locations is important to identify the location of event for further actions. Existing localization algorithms consume more energy at sensor nodes for computation and communication thereby reduce the lifetime of entire WSNs. Existing approaches also suffer with less localization coverage and localization accuracy. The objective of the proposed work is to increase the lifetime of WSNs while increasing the localization coverage and localization accuracy. A novel intelligent unmanned aerial vehicle anchor node (IUAN) is proposed to reduce the communication cost at sensor nodes during localization. Further, the localization computation cost is reduced at each sensor node by the proposed intelligent arc selection (IAS) algorithm. IUANs construct the location-distance messages (LDMs) for sensor nodes deployed in isolated locations and reach the Control Station (CS). Further, the CS aggregates the LDMs from different IUANs and computes the position of sensor nodes using IAS algorithm. The life time of WSN is analyzed in this paper to prove the efficiency of the proposed localization approach. The proposed localization approach considerably extends the lifetime of WSNs, localization coverage and localization accuracy in isolated environments.

A Study on Real Time Estimation System of Fire Sound Source Localization (소화기 발사음의 실시간 위치 추정 시스템에 관한 연구)

  • Roh, Chang-Su;Park, Byung-Su;Do, Sung-Chan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.768-775
    • /
    • 2009
  • In this paper, the sound source localization system in real time which uses the time delay of arrival signal is proposed. This system uses minimum microphones and surveillance camera for estimation of the sound source localization and sound direction. To apply this system to the military field, four models(model1~model4) are derived. Model 1 can be used to evaluate the sound source localization at the long distance. Model2 and model3 can be applied to estimate the sound direction. Model4 is useful for the special purpose and potable device. It is possible for this system to be used for the military guard and surveillance. As a result of experiments, It is shown that this system can estimate the sound source localization and the sound direction using minimum microphones.

Localization of People at Risk based on the Fire Alarm Networks and Bluetooth (화재경보망과 블루투스 기반으로 위험에 처한 사람의 위치 파악)

  • Kim, Chae-Won;Son, Joo-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.159-160
    • /
    • 2019
  • It would be very important to localize people at risk as soon as possible in order to minimize the damage. Generally the infrastructure should be deployed additionally for indoor positioning system. In this paper, we proposed an indoor localization system for people at risk using the existing fire alarm networks. The system detects the signal of smart devices of people in danger immediately and let the main alarm controller ring all alarms in vessel and display the position. Thus, the proposed system can make the burden much less to deploy additional network and infrastructure.

  • PDF

Localization Strategy of Building Fire Following Earthquake Risk Assessment Method (건축물 지진화재위험도 평가기법의 국산화 전략)

  • Kang, Taewook;Kim, Subin;Kim, Ye-eun;Kang, Jaedo;Kim, Haewon;Shin, Jiuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.57-69
    • /
    • 2023
  • In this study, in order to establish a strategy for developing an fire following earthquake risk assessment method that can utilize domestic public databases(building datas, etc.), the method of calculating the ignition and fire-spread among the fire following earthquake risk assessment methodologies proposed by past researchers is investigated After investigating and analyzing the methodology used in the HAZUS-MH earthquake model in the United States and the fire following earthquake risk assessment methodology in Japan, based on this, a database such as a domestic building data utilized to an fire following earthquake risk assessment method suitable for domestic circumstances (planned) was suggested.

Development of a Hovering Robot System for Calamity Observation

  • Kang, M.S.;Park, S.;Lee, H.G.;Won, D.H.;Kim, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.580-585
    • /
    • 2005
  • A QRT(Quad-Rotor Type) hovering robot system is developed for quick detection and observation of the circumstances under calamity environment such as indoor fire spots. The UAV(Unmanned Aerial Vehicle) is equipped with four propellers driven by each electric motor, an embedded controller using a DSP, INS(Inertial Navigation System) using 3-axis rate gyros, a CCD camera with wireless communication transmitter for observation, and an ultrasonic range sensor for height control. The developed hovering robot shows stable flying performances under the adoption of RIC(Robust Internal-loop Compensator) based disturbance compensation and the vision based localization method. The UAV can also avoid obstacles using eight IR and four ultrasonic range sensors. The VTOL(Vertical Take-Off and Landing) flying object flies into indoor fire spots and sends the images captured by the CCD camera to the operator. This kind of small-sized UAV can be widely used in various calamity observation fields without danger of human beings under harmful environment.

  • PDF

Development of Sensor Device and Probability-based Algorithm for Braille-block Tracking (확률론에 기반한 점자블록 추종 알고리즘 및 센서장치의 개발)

  • Roh, Chi-Won;Lee, Sung-Ha;Kang, Sung-Chul;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.249-255
    • /
    • 2007
  • Under the situation of a fire, it is difficult for a rescue robot to use sensors such as vision sensor, ultrasonic sensor or laser distance sensor because of diffusion, refraction or block of light and sound by dense smoke. But, braille blocks that are installed for the visaully impaired at public places such as subway stations can be used as a map for autonomous mobile robot's localization and navigation. In this paper, we developed a laser sensor stan device which can detect braille blcoks in spite of dense smoke and integrated the device to the robot developed to carry out rescue mission in various hazardous disaster areas at KIST. We implemented MCL algorithm for robot's attitude estimation according to the scanned data and transformed a braille block map to a topological map and designed a nonlinear path tracking controller for autonomous navigation. From various simulations and experiments, we could verify that the developed laser sensor device and the proposed localization method are effective to autonomous tracking of braille blocks and the autonomous navigation robot system can be used for rescue under fire.

3D LIDAR Based Vehicle Localization Using Synthetic Reflectivity Map for Road and Wall in Tunnel

  • Im, Jun-Hyuck;Im, Sung-Hyuck;Song, Jong-Hwa;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.159-166
    • /
    • 2017
  • The position of autonomous driving vehicle is basically acquired through the global positioning system (GPS). However, GPS signals cannot be received in tunnels. Due to this limitation, localization of autonomous driving vehicles can be made through sensors mounted on them. In particular, a 3D Light Detection and Ranging (LIDAR) system is used for longitudinal position error correction. Few feature points and structures that can be used for localization of vehicles are available in tunnels. Since lanes in the road are normally marked by solid line, it cannot be used to recognize a longitudinal position. In addition, only a small number of structures that are separated from the tunnel walls such as sign boards or jet fans are available. Thus, it is necessary to extract usable information from tunnels to recognize a longitudinal position. In this paper, fire hydrants and evacuation guide lights attached at both sides of tunnel walls were used to recognize a longitudinal position. These structures have highly distinctive reflectivity from the surrounding walls, which can be distinguished using LIDAR reflectivity data. Furthermore, reflectivity information of tunnel walls was fused with the road surface reflectivity map to generate a synthetic reflectivity map. When the synthetic reflectivity map was used, localization of vehicles was able through correlation matching with the local maps generated from the current LIDAR data. The experiments were conducted at an expressway including Maseong Tunnel (approximately 1.5 km long). The experiment results showed that the root mean square (RMS) position errors in lateral and longitudinal directions were 0.19 m and 0.35 m, respectively, exhibiting precise localization accuracy.

A Verification Study on the Demand Performance of Fabric Duct for Localization Development of Naval Vessel (해군 수상함 국산화개발 천 덕트의 요구성능 검증연구)

  • Jung, Young In;Choi, Sang Min;Jung, Hyun Sub;Sim, Min Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.468-474
    • /
    • 2020
  • Metal ducts for transporting air conditioning and heating inside ships have recently been replaced by cloth ducts that have the advantage of delivering air evenly to the compartments, with excellent noise reduction in major compartments, such as combat command rooms, steering rooms, and sound detector cabins. Since the performance requirements of fabric ducts for vessels are strict, and the entire length of the ducts was imported from Korea, the government wants to create economic effects through localization of fabric ducts. Air permeability and fire prevention performance tests verified the applicability to naval vessels of fabric ducts developed by Hyundai Heavy Industries and HiDact, and performance requirements presented in the POS were verified. As a result of the tests, the fabric ducts met the requirements for air permeability and fireproof performance.