• Title/Summary/Keyword: Fire load

Search Result 515, Processing Time 0.022 seconds

An Experimental Study of Improving Fire Performance with Steel-fibers for Internally Anchored Square Composite Columns (내화성능 개선을 위한 강섬유 보강 내부 앵커형 각형강관 합성기둥의 실험연구)

  • Kim, Sun Hee;Yom, Kong Soo;Kim, Yong Hwan;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.499-509
    • /
    • 2014
  • This study focuses on mixing steel fiber in the concrete to improve the ductility and toughness of the columns. The purpose of the study is to evaluate the load capacity and deformation capacity associated with the amount of steel fiber and loading condition and to analyze the interplay between the steel fiber reinforced concrete and the welding built-up square tube in terms of structure and fire resistance performance. Reinforcement of concrete with steel fiber(Vf=0.375%), when cross-section shape and boundary condition (load ratio) remained unchanged, improved fire resistance performance by 1.1~1.3 times. It is deemed that the area resisting thermal load increased and fire resistance performance was improved since the concrete reinforced with steel fiber restrained cracking. In addition, the fact that the cross-sections of the concrete were barely damaged indicates that load share capacity was greatly improved.

An Experimental Study on The Fire Resistance Performance of Steel Encased Reinforcement Concrete and Steel Framed Mortar Beam with Loading Condition (철골 철근콘크리트 보 및 철골철망 모르타르조 보의 전열특성 및 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Yeo, In-Hwan;Kwon, Ki-Hyuck;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.80-88
    • /
    • 2012
  • This study evaluates the fire resisting capacity of the beam of the legal fire resistance construction, which establishes the Article 3 of the Regulations on Escape and Fire Resistance of Buildings. There are a total of five structures that we consider as legal fire resistance constructions, however, this study has a primary target of the reinforced concrete beam, and tests the fire-resistant performance depend on the covering depth of reinforce concrete. The results showed that it meets the three hours, the maximum statutory fire resistance time, if it was a load ratio of 0.5 and covering depth of 40 cm. Steel framed mortar beam is legal fire resistance structure that it was possessed three hours fire resistance performance, if it was a load ratio of 0.4 and covering depth of 60 mm.

Estimation of Biomass Loss and Greenhouse Gases Emissions from Surface Layer Burned by Forest Fire (산불로 인한 지표층 연소량 및 온실가스 배출량 추정)

  • Lee, Byungdoo;Youn, Ho Jung;Koo, Kyosang;Kim, Kyongha
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.286-290
    • /
    • 2012
  • Globally, the forest fires are a significant contributor of carbon dioxide and other greenhouse gases in the atmosphere. In this study, fuel load consumed by forest fire and emission of green house gases were analysed in the surface layer. For this, remaining fuel was collected and weighed with the species (Japanese red pine, deciduous) and the forest fire types (surface fire, crown fire) in the 51 forest fires. 8,361 kg/ha fuel load was consumed in deciduous forest damaged by surface fire, and 8,055 kg/ha, 12,333 kg/ha in Japanese red pine burned by surface fire and crown fire. The combustion ratios were 78, 59, and 90%, respectively. 15,856 kg/ha the green house gases such as $CO_2$, $CH_4$, $CH_4$ in deciduous forest burned by surface fire was emitted and 14,834 kg/ha, 22,709 kg/ha in Japanese red pine burned by surface fire and crown fire.

The Study on the Prediction of Temperature Curve by Compartment Fire Experiment (구획화재실험을 통한 온도 변화 예측 기법 연구)

  • Kweon, Oh-Sang
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.44-51
    • /
    • 2014
  • In this study, the Mock-up office space experiments have been performed for the fire behavior analysis of the compartmented space used for the performance-based fire safety design of buildings. Mock-up test was conducted using the compartmented office space dimensions, which are 2.4 m wide, 3.6 m wide, and 2.4 m hight. Test was conducted with the combustible materials such as a desk, a chair, a computer ect. The fire load in the Mock-up office space was $18.74kg/m^2$. As a result, the temperature of the central compartment space to reach $600^{\circ}C$ were 394 to 408 s. The temperature of the corner near the entrance edge to reach $600^{\circ}C$ were 404 to 420 s. At this study, the temperature curve in the compartmented space has been predicted using the temperature data appling the BFD curve. The BFD curve factor based on the fire tests was determined by the maximum temperature of $900^{\circ}C$, 7 min to reach the maximum temperature, and the shape coefficient of 1.5. The initiating fire was rapidly increased to 9 min, and decreased.

The bearing capacity of monolithic composite beams with laminated slab throughout fire process

  • Lyu, Junli;Zhou, Shengnan;Chen, Qichao;Wang, Yong
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.87-102
    • /
    • 2021
  • To investigate the failure form, bending stiffness, and residual bearing capacity of monolithic composite beams with laminated slab throughout the fire process, fire tests of four monolithic composite beams with laminated slab were performed under constant load and temperature increase. Different factors such as post-pouring layer thickness, lap length of the prefabricated bottom slab, and stud spacing were considered in the fire test. The test results demonstrate that, under the same fire time and external load, the post-pouring layer thickness and stud spacing are important parameters that affect the fire resistance of monolithic composite beams with laminated slab. Similarly, the post-pouring layer thickness and stud spacing are the predominant factors affecting the bending stiffness of monolithic composite beams with laminated slab after fire exposure. The failure forms of monolithic composite beams with laminated slab after the fire are approximately the same as those at room temperature. In both cases, the beams underwent bending failure. However, after exposure to the high-temperature fire, cracks appeared earlier in the monolithic composite beams with laminated slab, and both the residual bearing capacity and bending stiffness were reduced by varying degrees. In this test, the bending bearing capacity and ductility of monolithic composite beams with laminated slab after fire exposure were reduced by 23.3% and 55.4%, respectively, compared with those tested at room temperature. Calculation methods for the residual bearing capacity and bending stiffness of monolithic composite beams with laminated slab in and after the fire are proposed, which demonstrated good accuracy.

Detection Technique of Tracking at Indoor Wiring using Neural Net work (신경회로망을 이용한 옥내배선의 트랙킹 검지 기법)

  • 최태원;이오걸;김석순;이수흠;정원용
    • Fire Science and Engineering
    • /
    • v.9 no.1
    • /
    • pp.3-9
    • /
    • 1995
  • This paper is a study to dectect the tracking owing to deterioration of indoor wiring, and to prevent the electrical fire. After analysing the harmonics of waveshapes in load current and tracking current by FFT, a method of identifying the tracking was developed by using neural network. Fluoscent lamp, witch was mostly used in indoor, was chosen as the load used in this study. When the learning number in neural network was more then 30,000 times, an excellent neural net-work which could correctly identify the tracking was established. Therefore, the result of this study can be utilized as a basic material in various measuring instruments, such as an hotline inslation tester, earth tester in vehicles, and tracking fire alarm device, witch can detect the tracking under the condition of hotline.

  • PDF

A Suggestion on the Fire load and Combustible survey for Prediction of Fire in office Facilities (업무시설의 화재성상예측을 위한 가연물 조사 및 화재하중 제안)

  • Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.98-99
    • /
    • 2019
  • In Korea, buildings are becoming skyscrapers due to restrictions on land. The performance-oriented design was introduced in 2009 for fire safety of such buildings, but the application of the combustible data through engineering design and experiment is a poor reality. Large buildings are used for complex purposes, especially since the density of the office facilities is high, the study conducted a study on the combustible materials of the office facilities and the thermal speed and fire load of the main combustibles of the office facilities were calculated.

  • PDF

Dynamic Response of Drill Floor to Fire Subsequent to Blowout

  • Kim, Teak-Keon;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.110-119
    • /
    • 2020
  • Explosions and fires on offshore drilling units and process plants, which cause loss of life and environmental damage, have been studied extensively. However, research on drilling units increased only after the 2010 Deepwater Horizon accident in the Gulf of Mexico. A major reason for explosions and fires on a drilling unit is blowout, which is caused by a failure to control the high temperatures and pressures upstream of the offshore underwater well. The area susceptible to explosion and fire due to blowout is the drill floor, which supports the main drilling system. Structural instability and collapse of the drill floor can threaten the structural integrity of the entire unit. This study simulates the behavior of fire subsequent to blowout and assesses the thermal load. A heat transfer structure analysis of the drill floor was carried out using the assessed thermal load, and the risk was noted. In order to maintain the structural integrity of the drill floor, passive fire protection of certain areas was recommended.

An Experimental Study on the Evaluation of Mechanical Properties of CFT Column by Unstressed Test and Stub Specimen (비재하 가열시험 및 Stub 시험체를 활용한 CFT기둥의 역학적 특성평가에 관한 실험적 연구)

  • Lee, Dae-Hee;Lee, Tae-Gyu;Lee, Eui-Bae;Kim, Young-Sun;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.209-213
    • /
    • 2008
  • Recently, it increases in use of CFT(Concrete filled steel tube, below CFT) because material and method are required to be diversification and High-Performance according to increase the super-high structure. But, CFT column lose bearing capacity under fire because steel tube is exposed to outside. As a result, structure is collapsed and then it cause much damage. In case of the Europe, Japan and America, they have studied the fire-resistance performance of CFT under fire for a long time. However, it would have hardly studied it in domestic because it is much difficulty about experiment machine and cost. So it is needed base on fire-resist performance of CFT under fire. Therefore, this study dynamic specificity of stub column which made tester of stub column based on facts of strength and mixing fiber evaluated used heating and load testing machine. As a result, it is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with experiment according to the design high strength concrete.

  • PDF

An experimental and numerical analysis of concrete walls exposed to fire

  • Baghdadi, Mohamed;Dimia, Mohamed S.;Guenfoud, Mohamed;Bouchair, Abdelhamid
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.819-830
    • /
    • 2021
  • To evaluate the performance of concrete load bearing walls in a structure under horizontal loads after being exposed to real fire, two steps were followed. In the first step, an experimental study was performed on the thermo-mechanical properties of concrete after heating to temperatures of 200-1000℃ with the purpose of determining the residual mechanical properties after cooling. The temperature was increased in line with natural fire curve in an electric furnace. The peak temperature was maintained for a period of 1.5 hour and then allowed to cool gradually in air at room temperature. All specimens were made from calcareous aggregate to be used for determining the residual properties: compressive strength, static and dynamic elasticity modulus by means of UPV test, including the mass loss. The concrete residual compressive strength and elastic modulus values were compared with those calculated from Eurocode and other analytical models from other studies, and were found to be satisfactory. In the second step, experimental analysis results were then implemented into structural numerical analysis to predict the post-fire load-bearing capacity response of the walls under vertical and horizontal loads. The parameters considered in this analysis were the effective height, the thickness of the wall, various support conditions and the residual strength of concrete. The results indicate that fire damage does not significantly affect the lateral capacity and stiffness of reinforced walls for temperature fires up to 400℃.