• 제목/요약/키워드: Fire ignition

검색결과 521건 처리시간 0.021초

Stochastic Simulation Model of Fire Occurrence in the Republic of Korea (한국 산불 발생에 대한 확률 시뮬레이션 모델 개발)

  • Lee, Byungdoo;Lee, Yohan;Lee, Myung Bo;Albers, Heidi J.
    • Journal of Korean Society of Forest Science
    • /
    • 제100권1호
    • /
    • pp.70-78
    • /
    • 2011
  • In this study, we develop a fire stochastic simulation model by season based on the historical fire data in Korea. The model is utilized to generate sequences of fire events that are consistent with Korean fire history. We employ a three-stage approach. First, a random draw from a Bernoulli distribution is used to determine if any fire occurs for each day of a simulated fire season. Second, if a fire does occur, a random draw from a geometric multiplicity distribution determines their number. Last, ignition times for each fire are randomly drawn from a Poisson distribution. This specific distributional forms are chosen after analysis of Korean historical fire data. Maximum Likelihood Estimation (MLE) is used to estimate the primary parameters of the stochastic models. Fire sequences generated with the model appear to follow historical patterns with respect to diurnal distribution and total number of fires per year. We expect that the results of this study will assist a fire manager for planning fire suppression policies and suppression resource allocations.

Analysis of Fire Risk Assessment Indicators of Publicly-Used Establishments using Delphi/AHP (Delphi/AHP를 활용한 다중이용업 신종업종의 화재위험평가지표 분석)

  • Kim, Myung-Cheol;Kim, Hak-Joong;Park, Kyung-Hwan;Youn, Hae-Kwon;Lee, Seung-Ho
    • Fire Science and Engineering
    • /
    • 제33권6호
    • /
    • pp.87-94
    • /
    • 2019
  • Through a press release dated July 17, 2018, the Anti-Corruption and Civil Rights Commission recommended that the National Fire Agency develop preventive measures against fire in the "Indoor Archery Ground" and "Room Escape Café" etc., which were originally excluded from the category of "Publicly Used Establishments." This study developed the hierarchy of domains and indicators of measurement for fire risk assessment of the new business of publicly used establishments through the Delphi Method. It analyzed the goodness of fit scores (over 3.00) and secured an average score of 4.25. Using AHP analysis, the ratio of consistency for the domains of measurement of fire risk assessment was found to be 4.0%, which was lower than CR ≤ 0.1 (10%). The consistency of subsequent measurement indicators were distributed in the range of 0.1%~3.6%, and they were identified as being commonly consistent. The indicators of measurement appeared as follows in order of importance and priority: Type of Internal Passage of Establishment and Evacuation Capacity of Exit (0.316), Control of Ignition Source (0.141), Inherent Risk (0.106), Appropriateness and Adaptiveness of Fire Detection System (0.097), Control of Inflammables/Combustibles (0.084), Guides and Facilities helping Evacuation (0.075), Fire Resistant Structure and Finishing Materials (0.060), Compartmentalization and Emergency Exit (0.049), Risk of Fire Expansion (0.046), and Appropriateness and Adaptiveness of Fire Extinguishing Facilities (0.026). The findings of this study are expected to be expansively used as data for future research on the development of fire risk assessment indicators.

Experimental Study on Moisture Content According to Addition of Surfactants (계면활성제 첨가에 따른 함수율에 관한 실험적 연구)

  • Kim, Nam-Kyun;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • 제29권2호
    • /
    • pp.79-83
    • /
    • 2015
  • The fire accident is a representative type of disaster that can largely impact on business. Therefore, precautionary measures and rapid initial response is very important when a disaster occurs. The storage of porous combustibles is inevitable in coal yard, plywood processing industry, and others that are currently operating. Initial fire fighting of fire and identifying the ignition point in such a porous combustible storage space are so difficult that if the initial response is failed, being led to deep-seated fire, surface fire is likely to result in secondary damage. In addition, deep-seated fire can cause personal injuries and property damage due to a large amount of toxic gases and reignition. Therefore damage reduction measures is required around the storage space to handle a porous flammable. Improving the penetration performance of the concentration of the surfactant is carried out as underlying study, which is about an deep-seated fire extinguishing efficiency augmentation when using wetting agents. The porous materials used in the experiments is radiata pine wood flour, which occupies more than 75% of the domestic wood market. Fire fighting water is selected as Butyl Di Glycol (BDG), which is being used for infiltration extinguishing agent, and the experiment was carried out by producing a standard solution. The experiment was carried out on the basis of the Deep-Seated Fire Test of NFPA 18. The amount of watering, porous material to the internal amount of penetration, and runoff measurement out of the porous material was conducted. According to experimental results, as the surface tension is reduced, the surfactant concentration macroscopic penetration rate decreases, but infiltration to a porous material is shown to have growth characteristics.

Experiments of Water Mist System Application for Rack Storage (랙크식 창고에 대한 미분무 시스템 적용성 실험)

  • Myoung, Sang-Yup;Kim, Jong-Hoon
    • Journal of the Society of Disaster Information
    • /
    • 제16권4호
    • /
    • pp.627-637
    • /
    • 2020
  • Purpose: This experimental study was conducted to find out whether a water-mist fire suppression system can be applied to C.E.P., a representative combustible material of a rack storage. Method: First, it was confirmed whether the water-mist fire-extinguishing system used in this experiment was capable of extinguishing oil fires. After that, the C.E.P. boxes were loaded in the same small space as used in the oil fire experiment, and then the experiment was conducted on three scenarios; door opening, door closing, and door closing and increasing the internal load. The scenario was set considering the opening and space size conditions, which are important factors for the water-mist fire suppression. Result: Oil fire suppression tests have shown that fires are well extinguished in both the door open and closed conditions. In case of a fire of C.E.P. boxes in the same space condition as an oil fire, the fire was not extinguished in the door open condition. Fires were extinguished in the case with the door closed condition, but the afterglow was confirmed. Conclusion: In the oil fire suppression test, a water-mist fire suppression system extinguished a fire in both the door open and closed conditions. However, for the C.E.P fire, it was possible to extinguish only under the door closed condition, and there was a possibility of re-ignition.

Combustion Characteristics of Pinus rigida Plates Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acid (Mn+) (알킬렌디아미노알킬-비스-포스폰산 금속염으로 처리된 리기다 소나무 시험편의 연소특성)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • 제27권6호
    • /
    • pp.70-76
    • /
    • 2013
  • Four kinds of new piperazinomethyl-bis-phosphonic acid $M^{n+}$ ($PIPEABPM^{n+}$) were synthesized and their combustive properties of Pinus rigida plates treated with $PIPEABPM^{n+}$ were tested. Pinus rigida specimens were painted in three times with 15 wt% $PIPEABPM^{n+}$solutions at the room temperature. After drying specimen treated with chemicals, com-bustive properties were examined by the cone calorimeter (ISO 5660-1). As a result, the combustion-retardation proper-ties were increased by due to the treated $PIPEABPM^{n+}$ solutions in the virgin pinus rigida. Especially, the specimens treated with $PIPEABPM^{n+}$ showed both the lower peak heat release rate ($HRR_{peak}$) (162.02~145.36) s and total heat release rate (THRR) (73.0~67.4) $MJ/m^2$ than those of virgin piperazinomethyl-bis-phosphonic acid (PIPEABP)-plate. Compared with virgin PIPEABP-plate, the specimens treated with the $PIPEABPM^{n+}$ showed low combustive properties. However the specimens treated with $PIPEABPM^{n+}$ showed both the shorter time to ignition (TTI) (67~23) s and the time to flameout (Tf) (472~433) s than those of virgin PIPEABP-plate by increasing the thermal conductivity.

Combustion Characteristics of Hinoki Cypress Louver after Pressure Impregnation with Boric Acid, Borax and Ammonium Phosphate (붕사, 붕산 및 인산암모늄을 가압 함침한 편백 루버의 연소특성)

  • Park, Hyung-Ju
    • Fire Science and Engineering
    • /
    • 제29권6호
    • /
    • pp.1-5
    • /
    • 2015
  • In this study, the combustion characteristics of Hinoki Cypress Louver were measured after performing pressure impregnation with aqueous solution of boric acid, borax, and ammonium phosphate. The characteristics measured include ignition time, critical heat flux, and mass loss rate by incident hear flux (25, 30 and $50kW/m^2$). The samples used for the test were $100{\times}100{\times}10mm$, and the 5 min variation for each incident heat flux was measured 3 times. The results show that the ignition time for incident heat flux of $25kW/m^2$ showed a delay effect of 17.4 to 21.3% except for Type C-H. There was no significant difference at 35 and $50kW/m^2$ in the average mass loss rate in Types A-H and D-H, which had lower rates than Type N-H, which was predicted to be higher than that of Type N-H ($10.7kW/m^2$) by 38.22 to 60.46%. It is thus expected that at the time of initial primary fire, there would be a delay effect against fire spread.

Star Building Materials Study on Wood Structure and Combustion Characteristics (건축재료별 목재구조와 연소특성에 관한연구)

  • Kim, Jong-Buk;Park, Young-Ju;Lee, Si-Young
    • Fire Science and Engineering
    • /
    • 제30권5호
    • /
    • pp.60-66
    • /
    • 2016
  • This study investigated the structure and combustion characteristics of four species, Timber Douglas-fir being used construction materials (finishes), Lauan, Cryptomeria japonica, Pinus densiflora trees in the area. In lookong into the ignition characteristics was a time range of ignition (TTI) appeared in the 21 s~32 s, especially Pinus densiflora TTI is ignited in a relatively rapid 601 s to 21 s than the other materials were destroyed in the 631 s. The maximum heat release rate and average heat release rate is Pinus densiflora > Lauan > Cryptomeria japonica > Douglas-fir showed a net. Barrel emissions are Lauan > Douglas-fir > Pinus densiflora > Cryptomeria japonica was in order. The total emissions was postponed Pinus densiflora $424.80m^2/m^2$, Lauan $185.93m^2/m^2$. Douglas-fir carbon emissions of 1460, showing 0.185 kg/kg CO maximum value from s $CO_2$ values show the maximum value to 15,986 kg/kg in 750 s stopped in the 3,090 s. Next, the study suggested methods to utilize as the basic data for evaluating the safety of the fire as a building material.

The Study on the Countermeasure Plans about Leakage, Explosion and Fire Accidents of Atmospheric Storage Tank (옥외저장탱크 누출, 폭발 및 화재사고 대응방안에 관한 고찰)

  • Lee, Gab-Kyoo
    • Fire Science and Engineering
    • /
    • 제30권6호
    • /
    • pp.48-56
    • /
    • 2016
  • A crude oil leakage from a large atmospheric storage tank occurred on 4 April 2014 at 14:50 in Ulsan City, while storing the crude oil in the tank. Emergency Rescue Control Group was deployed in the scene. The company, Fire Service Headquarters and associated agencies got together in Command Post (CP) for discussing an effective corresponding strategy. Many solution plans were drafted in the debate such as power down, stopping the facilities, checking the density of inflammable gas, suppressing oil evaporation, moving the leaked crude oil to a nearby tank and a processing plant and avoiding marine pollution. All the solutions were carried out in cooperation with several agencies and partners. The oil leakage accident was successfully settled up within the process of responding, The Fire Service Headquarters and the company thought that the most important thing was the suppression of oil evaporation and the elimination of ignition source. With Fire Service Headquarters and several agencies' every effort, an explosion and a fire didn't occurred in the scene. This study suggest the improvement of the operating system in Emergency Rescue Control Group in case of petroleum leakage, explosion and fire accidents of atmospheric storage tank, different from a ordinary disaster. Assuming that petroleum leakage in atmospheric storage tank develop the explosion and fire accidents, the spreading speed of the flame and the burning time was experimented and compared with each other. Furthermore, this study concentrates on the effective field response plan prepared for the afterward explosion and fire accidents from petroleum leak in a storage tank, with the database experimented and analyzed in accordance with the angle of radiation in the foam nozzle and the pressure of pumping in a fire engine.

A Study on the Development of Forest Fire Occurrence Probability Model using Canadian Forest Fire Weather Index -Occurrence of Forest Fire in Kangwon Province- (캐나다 산불 기상지수를 이용한 산불발생확률모형 개발 -강원도 지역 산불발생을 중심으로-)

  • Park, Houng-Sek;Lee, Si-Young;Chae, Hee-Mun;Lee, Woo-Kyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제9권3호
    • /
    • pp.95-100
    • /
    • 2009
  • Fine fuel moisture code (FFMC), a main component of forest fire weather index(FWI) in the Canadian forest fire danger rating system(CFFDRS), indicated a probability of ignition through expecting a dryness of fine fuels. According to this code, a rising of temperature and wind velocity, a decreasing of precipitation and decline of humidity in a weather condition showed a rising of a danger rate for the forest fire. In this study, we analyzed a weather condition during 5 years in Kangwon province, calculated a FFMC and examined an application of FFMC. Very low humidity and little precipitation was a characteristic during spring and fall fire season in Kangwon province. 75% of forest fires during 5 years occurred in this season and especially 90% of forest fire during fire season occurred in spring. For developing of the prediction model for a forest fire occurrence probability, we used a logistic regression function with forest fire occurrence data and classified mean FFMC during 10 days. Accuracy of a developed model was 63.6%. To improve this model, we need to deal with more meteorological data during overall seasons and to associate a meteorological condition with a forest fire occurrence with more research results.

An Experimental Study of Sprinkler system for Sandwich Panel Wall Protection (샌드위치패널 벽면보호용 스프링클러설비 적용 실험)

  • Seo, Dong-Hun;Kim, Won-Hyung;Kim, Jong-Hoon;Lee, Young-Jae
    • Fire Science and Engineering
    • /
    • 제31권5호
    • /
    • pp.37-43
    • /
    • 2017
  • Domestic sandwich panel buildings are widely used on walls and roofs of factories and warehouse facilities. Factory and warehouse facilities have high fire load and rapid spread of fire due to their use characteristics, leading to large fires. Due to the characteristics of materials, walls and roofs are collapsed, resulting in life damage and property damage. In this regard, this study examined domestic and international standards of sprinkler facilities to prevent ignition of sandwich panel walls. Also, in order to check whether the fire was prevented by installing the head on the wall of the sandwich panel, the fire test was carried out with 10 cm, 60 cm, and 120 cm from the wall along the sprinkler head installation standard of domestic fire safety standards. As a result of the fire test, it was confirmed that the sandwich panel was prevented from igniting when the head of water pressure 0.1 MPa and water quantity K-80 was installed. According to the separation distance, it was impossible to measure the temperature at 10 cm, but at 60 cm, At the maximum temperature of $525^{\circ}C$ and 120 cm, the maximum temperature of the wall of the sandwich panel was measured as $276^{\circ}C$. As a result of the fire test, considering the fire point of 450 degrees Celsius in the fire test of the sandwich panel, the distance from the sandwich panel wall to the combustible is more than 120 cm.