• Title/Summary/Keyword: Fire ignition

Search Result 518, Processing Time 0.022 seconds

Analysis of Ignition Time/Current Characteristics and Energy when Series Arc-Fault Occurs at Rated 220 V (220 V 직렬 아크고장발생 시 점화 시간/전류 특성 및 에너지 분석)

  • Ko, Won-Sik;Moon, Won-Sik;Bang, Sun-Bae;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1184-1191
    • /
    • 2013
  • Probability of ignition due to arc-fault and energy of the arc-fault for the case of applying serial arc-fault interruption time of 120 V defined in UL 1699 to the voltage of 220 V of domestic condition and also for the case of applying it to the HIV wire type are analyzed. It has been confirmed that when the arc-fault occurs under 5 A, 10 A, and 20 A. Probability of ignition for the three different current conditions is 0.74(74%), 0.48(48%), and 0.32(32%) respectively for respective interruption time within 1 sec, 0.4 sec, and 0.2 sec. We discover that when we apply the same arc interruption time for 120 V defined in UL 1699 to the domestic environment of 220 V. The probability of ignition increases from 1.5% for 120 V condition to as much as 74% for 220 V condition. Conclusively, if we apply the standard for the serial arc-fault interruption time defined in UL 1699 for 120 V to the domestic condition of 220 V, the fire prevention effect of electric fire due to arc-fault equal to that of UL standard of 120 V can not be achieved.

The Applicable Investigation of Response Surface Methodology(RSM) for the Prediction of the Ignition Time, the Heat Release Rate and the Maximum Flame Height of the Interior Materials (내장재의 발화시간, 열방출율 및 최대화염 높이의 예측을 위한 반응표면방법론의 활용성 고찰)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.14-20
    • /
    • 2006
  • The aim of this study is to predict the ignition times and the HRR(heat release rate) for building interior materials. By using the literature data and RSM(response surface methodology), the new equations for predicting the ignition time and the HRR of building interior materials are proposed. The A.A.P.E.(average absolute percent error) and the A.A.D.(average absolute deviation) of the reported and the calculated ignition times by means of the thickness and the density were 4.35 sec and 1.57 sec, and the correlation coefficient was 0.987. The correlation coefficient of the reported and the calculated the net HRR by means of burner width and power was 0.983. Also the correlation coefficient of the reported and the calculated the total HHR by means of burner width and power was 0.999. The correlation coefficient of the reported and the calculated the maximum flame height by means of burner width and power was 0.999. The values calculated by the proposed equations were in good agreement with the literature data.

A Study on Fire Analysis According to Temperature Characteristics of an Incandescent Electric Lamp at 220V/100W (220V/100W 백열전구의 온도특성에 따른 화재분석에 관한 연구)

  • Shong, Kil-Mok;Han, Woon-Ki;Kim, Young-Seok;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.20 no.1 s.61
    • /
    • pp.43-49
    • /
    • 2006
  • In this paper, we are studied on the temperature characteristics and fire progress of an incandescent electric lamp at 220V/100W. In the case of stationary state, the ignition possibility of the incandescent electric lamp due to the heat generation was low because the temperature was measured at $161.9^{\circ}C$ the temperature was increased at $538.1^{\circ}C$ in the airtight chamber, but it does not generated the fire because the oxygen was not exist in the airtight chamber. When the lamp is broken, the filament of lamp was melted in the air. The gas of lamp interior spurted to the weakest part by external flame. Thus, the incandescent electric lamp is high possibility of fire when oxygens from airtight space. Also, it is known that the possibility of ignition is very high if combustion materials(sawdust) exists on surrounding. These experimental results will be utilized for the data in the investigation electrical fire cause.

Fire Test of Old Type Interiors of Subway Vehicle in ISO 9705 Room (ISO 9708 룸 설비를 이용한 구형 지하철 내장재 화재시험)

  • Lee, Duck-Hee;Park, Won-Hee;Jung, Woo-Sung;Hwang, Jung-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.481-487
    • /
    • 2010
  • A room scale fire test was done for interior materials from a subway vehicle installed within an ISO 9705 fire test room. The interior materials are the old ones which were made before the new fire safety guideline of subway vehicles. The output of ignition burner was increased in controlled steps to CEN/TS 45545-1. The objectives of this interior fire test are to assess the fire performance in terms of ignition and flame spread on interior lining materials and to provide data on an enclosure fires involving subway vehicle interior materials that grow to flashover. Temperatures, heat flux and heat release rate variations verse time of the test are measured. Heat release rate is compared with that of calculated by modified flaming area based summation method. These test results will be used for verification of CFD fire simulation of full subway vehicle.

A Study on the Damaged Pattern of Dryvit by External Flame (외부화염에 의한 드라이비트의 소손패턴 연구)

  • Park, Young Ju;Hong, Yi Pyo;Lee, Hae Pyeong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.40-47
    • /
    • 2015
  • In this study, temperature characteristics and fire damage form were analyzed to investigate flame spreading form and fire probability from ignition sources subject to drivit component materials which is finishing material in architecture. Ignition sources were limited to a gas torch and exterior panel board fire, and the size of the sample was manufacture in 30 cm length ${\times}$ 50 cm height ${\times}$ 5cm thickness size. Marble (inner wall) + 3 mm drivit (outer wall), marble (inner wall) + 4 mm plaster stone (outer wall), sandwich panel + 3 mm driver bit (outer wall), sandwich panel + 3 mm driver bit + insulation (outer wall), and gypsum board (inner wall) + 3 mm drivit (outer wall) were prepared for the sample. As result of the research for temperature characteristics, large temperature difference by each material was shown in $218^{\circ}C{\sim}995^{\circ}C$ at 30 seconds and $501^{\circ}C{\sim}1078^{\circ}C$ at 300 seconds. Especially when the inner wall was a plaster board, lowest temperature of $501^{\circ}C$ was shown at 300 seconds and marble inner wall showed the following lowest temperature of $900^{\circ}C$. Temperature rising over $1000^{\circ}C$ was shown in other materials. Regarding fire damage form, drivit or gypsum board outer wall parts exposed to fire showed combustion and carbonization to show calcination(breaking phenomenon) and influence of heat exposure was higher as calcination became more severe.

A Study on the Smoldering hazard of Rice bran dust. (쌀겨 분진의 훈소 위험성에 관한 연구)

  • 이창우;김정환;현성호
    • Fire Science and Engineering
    • /
    • v.13 no.2
    • /
    • pp.12-17
    • /
    • 1999
  • We intended to investigate combustion properties of rice bran dust. Combustion properties of h rice bran dust according to size distribution and amount were measured as temperature v variation with time using spontaneous ignition apparatus. Moreover, combustion properties w with blowing or without blowing condition were checked in order to investigate combustion p properties in spontaneous ignition apparatus according to flow condition of air. A As the mass and size of rice bran dust was increased, i띠ti외 smoldering temperature was l lowered. All of combustion forms were smoldering combustion. Initial smold얹ing temperature w was slightly lower with blowing condition than without blowing condition in spontaneous i ignition apparatus, which condition made heating value high.

  • PDF

Appropriateness of MSDS by Means of the Measurement of Combustible Properties of Anisole (아니솔의 연소특성치의 측정에 의한 MSDS의 적정성)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.20-24
    • /
    • 2015
  • For the safe handling of anisole, this study was investigated the explosion limits of anisole in the reference data. The flash points and auto-ignition temperatures (AITs) by ignition delay time were experimented. The lower flash points of Anisole by using closed-cup tester were experimented in $39^{\circ}C$ and $42^{\circ}C$. The lower flash points of Anisole by using open cup tester were experimented in $50^{\circ}C$ and $54^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for Anisole. The AIT of Anisole was experimented as $390^{\circ}C$. The lower explosion limit (LEL) by the measured the lower flash point for Anisole were calculated as 1.07 Vol%.

The Measurement of Combustible Properties of Cyclohexanol (사이클로헥산올의 연소특성치의 측정)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.64-68
    • /
    • 2014
  • For the safe handling of cyclohexanol, this study was investigated the explosion limits of cyclohexanol in the reference data. The flash points and auto-ignition temperatures (AITs) by ignition delay time were experimented. The lower flash points of cyclohexanol by using closed-cup tester were experimented in$60^{\circ}C{\sim}64^{\circ}C$. The lower flash points of cyclohexanol by using open cup tester were experimented in $66^{\circ}C{\sim}68^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for cyclohexanol. The AIT of cyclohexanol was experimented as $297^{\circ}C$. The lower explosion limit (LEL) and the upper explosion limit UEL) by the measured the lower flash point and the upper flash point of cyclohexanol were calculated as 0.95 Vol% and 10.7 Vol%, respectively.

Combustion Characteristics of Fiber Reinforced Plastic by Cone Calorimeter (콘칼로리미터를 이용한 섬유강화플라스틱(FRP)의 연소특성)

  • 이근원;김관응;이두형
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.67-72
    • /
    • 2004
  • This study describes to assess combustion characteristics of fiber reinforced plastic (FRP) that is used an elements of building or structure in workplace. The combustion characteristics of the fiber reinforced plastic were carried out using by a Cone Calorimeter according to ISO 5660 standard. As the results of this study, the time to ignition and heat release rate of the fiber reinforced plastic was differ with heat flux of irradiance and content of flame retardant agent. The heat release rate of the fiber reinforced plastic was increased with increasing heat flux of irradiance. The flashover propensity of the fiber reinforced plastic using time to ignition and peak heat release rate was examined according to classification method by R.V. Petrella.

노말프로판올의 자연발화온도와 발화지연시간의 관계

  • 하동명;최용찬;한종근;김한돌;신용범;정세훈;이문선;윤준혁;류정열
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.154-159
    • /
    • 2003
  • 화학공장과 제조업 등의 사업장에서 발생하는 화재 및 폭발은 설비와 건물의 파괴뿐만 아니라 사업장의 근로자와 인근 주민에 대한 인명 피해까지 초래하는 경우가 많으므로 공정 안전을 위해 화재 및 폭발 분야의 연구에 많은 관심을 가져야 한다. 방화(Fire Protection) 및 방폭(Fire Protection)에 관련되는 특성치로 MSDS의 5번째 항목인 폭발화재시대처방법(Fire-fighting Measures)에서는 폭발(연소)한계(Explosive Limit 혹은 Flammability Limit), 인화점(Flash Point), 최소발화온도(AIT: Auto-ignition Temperature)가 제시되고 있다.(중략)

  • PDF