• Title/Summary/Keyword: Fire ignition

Search Result 517, Processing Time 0.024 seconds

APPLICATIONS OF A MODEL TO COMPARE AFLAME SPREAD AND BEAT RELEASE PROPERTIES OF INFERIOR FINISH MATERIALS IN A COMPARTMENT

  • Kim, Woon-Hyung;James G. Quintiere
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.193-200
    • /
    • 1997
  • Flame spread and heat release properties and incident heat flux of interior materials subject to an igniter heat flux in a compartment are investigated and compared by using computer model. A comer fire ignition source is maintained for 10 minutes at 100 kw and subsequently increased to 300kw. In executing the model, base-line material properties are selected and one is changed for each run. Also 4 different igniter heat flux conditions and examined. Results are compared for the 12 different materials tested by the ISO Room Comer Test (9705). The time for total energy release rate to reach 1MW is examined. The parameters considered include flame heat flux and thermal inertia, lateral flame spread parameter, heat of combustion and effective heat of gasfication. The model can show the importance of each property in causing fire growth on interior Hnish materials in a compartment. The effect of ignitor heat flux and material property effects were demonstrated by using dimensionless parameters a, b and Tb. Results show that for b greater than about zero, flashover time in the ISO Room-Corner test is principally proportional to ignition time and nothing more.

  • PDF

Fire Mechanism in Power Connection Points of Outlets and Suggestion of a New Identification Method (콘센트 전원 접속구 화재 발생 메커니즘 고찰과 새로운 감식 방법 제시)

  • Park, Jin-Young;Bang, Sun-Bae;Eun, Hee-Rim;Oh, Se-Hyeok;Lee, Yoo-Bin;Ko, Young-Ho
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.76-84
    • /
    • 2020
  • Most outlet fires occur around plug pins and plug pin receivers. However, no research has been conducted on ignitions at power connection points. This study confirms the possibility of ignition after incomplete connection, using a stranded wire, to the power connection point of an outlet. The experiment was divided into basic and reproducing experiments. The basic experiment confirmed the possibility of ignition according to the number of wire strands connected to the power connection point, and it identified the characteristics of the residue after the fire. In the reproducing experiment, lamps, vacuum cleaners, and heaters were connected to an outlet to check if the ignition at the connection advanced into a fire. The fire advanced due to the heat and arc generated at the connection point, and partial losses were identified in the U-type holder and clip. Accordingly, the results demonstrate that a fire may occur when the stranded wire is incompletely connected to the outlet. Moreover, it was confirmed that the cause of a fire can be determined based on the characteristics of the residue.

A Study on the Ignition Behaviors of Textiles according to Permeation Amount of Oils and Aeration (유지류의 침윤량과 공기주입에 따른 면화류의 발화거동에 관한 연구)

  • 오치훈;이창우;김정환;현성호
    • Fire Science and Engineering
    • /
    • v.14 no.1
    • /
    • pp.8-12
    • /
    • 2000
  • We had investigated thermal and ignition behaviors of textiles. Decomposition of textiles with temperature was investigated using a DSC and the weight loss according to temperature using a TGA in order to find the thermal hazard of textiles, and the ignition behaviors of textiles according to species and permeation amount of oil. In addition, ignition behaviors of those permeated into oils indicating different iodine value and of those with arid without air in reaction vessel of measuring equipment were studied with constant temperature method among ignition temperature measuring methods. As results, the range of decomposition temperature of synthetic fiber was slightly broad compared with that of natural fiber, pure cotton. Besides, the initiation temperature of heat generation of both samples riced in the case of no air injection in the reaction vessel. On the other hand, in the case of air injection that was lowered according to the increase in permeative amount of oils and fats and decreased quickly as sample was permeated into drying oil.

  • PDF

Analysis of Fire Characteristics based on the Thickness and Incident Heat Flux of Wood (합판류 목재의 두께별 입사열유속에 따른 연소특성 비교 연구)

  • Hwang, Sun-Woo;Park, Won-Hee;Kim, Chang-Yong
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.13-21
    • /
    • 2020
  • This study tested the wood used in building interiors; each type had various incident heat fluxes based on their thickness. The combustion characteristics measured were effective heat of combustion, heat release rate peak and arrival time, maximum average rate of heat emission, and piloted ignition temperature. The wood specimens used in the experiment were 4.8 to 18 mm thick. 25, 35, 50, and 60 kW/㎡ were applied to the incident heat flux that the wood specimens were exposed to. The wood specimens tested were two types of medium-density fiberboard (each with a different density), treated red pine, particle board, and plywood. A comprehensive comparison of different fire characteristics was conducted to analyze the fire patterns corresponding to each type of wood in this way, the risk of fire was studied. The risk of fire was particularly high for particle board. The results of quantifying the fire characteristics of the types of wood studied could function as important input data with which to calculate the fire load of composite combustibles.

Combustion Characteristics of the 5 Herb Species in Youngdong Areas (영동지역 5개 초본 수종의 연소특성)

  • Lee, Hae Pyeong;Lee, Si-Young;Park, Young Ju
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.290-296
    • /
    • 2009
  • In this study, we considered the combustion of the various herbs in youngdong areas such as festuca ovina, isodeon japonicus, oplismenus undulatifolius, pueraria thunbergiana, and cirsium japonicum var. ussuriense using the ignition temperature tester, cone calorimeter, smoke density chamber. We confirmed that the range of ignition temperature was $400{\sim}455^{\circ}C$ and the time to ignition and flameout were not recorded. The total heat release of isodeon japonicus was highest and the smoke release of festuca ovina was highest, and the yield of CO and $CO_2$ of pueraria thunbergiana, and cirsium japonicum var. ussuriense were highest among the samples. As a result, we concluded that isodeon japonicus will impact the fire intensity and fire spread and festuca ovina, pueraria thunbergiana, and cirsium japonicum var. ussuriense will influence the refuge.

A Study on Fire Hazards in Multiple Compartments with Lightweight Partition Walls (경량칸막이 벽체를 통한 다중구획공간에서의 화재위험성에 관한 연구)

  • Park, Sang-Min;Choi, Su-Gil;Jin, Se-Young;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.14-21
    • /
    • 2020
  • This paper presents the study of a fire risk to the backside of two miniatures of ISO 9705 2/5 using a lightweight partition for indoor space division and reproduction of the ISO 9705 test. An SGP partition, stud partition, glass wool panel, urethane foam panel, sandwich panel, and glass partition were selected as the test specimens, which are frequently used in construction. According to the ISO 9705 test standard, stabilization was achieved using a measuring device that recorded data before the ignition of a burner and continued recording for 120 s thereafter. After ignition was achieved, the power was increased to 300 kW for 600 s and then reduced to 100 kW for 600 s. The specimens were subsequently observed for 180 s, and the fire risk to the backside and the fire pattern of the wall unit were analyzed. Owing to the amount of heat generated by the ignition source, the maximum temperature of the backside was observed to be 67.7 ℃ for the SGP partition, 55.1 ℃ for the stud partition, 52.4 ℃ for the glass wool panel, 727.4 ℃ for the sandwich panel, 561 ℃ for the urethane foam panel, and 630.5 ℃ for the glass partition. In the cases of the sandwich and urethane foam panels, the explosion of flammable gas occurred by virtue of fusion of the interior materials. The reinforced glass was fractured owing to the temperature difference between the heat- and nonheat-responsive parts. Ultimately, the fire risk to the nearby section room was deemed to be high.

An Experimental Study on the Influence of the Spread of Firebrand on Building Exterior Materials and Roofing Materials in Urban Areas (도심지 인접 산불의 불티 확산이 건축물 외장재와 지붕재에 미치는 영향에 관한 실험적 연구)

  • Min, Jeong-Ki
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.617-626
    • /
    • 2021
  • Purpose: The purpose of this study is to evaluate the fire srpead risk of building exterior and roofing materials due to the firebrand of forest fire occurring in the urban areas. Method: In order to achieve this research purpose, by selecting building materials used for exterior and roofing materials of buildings, the time to ignition, total heat release, and heat release rate were investigated, and a forest fire firebrand system was established to the possibility of fire spread was confirmed. Result: As a result of the cone calorimeter test, the roofing material had a similar or faster ignition time due to radiant heat compared to the exterior material with the steel plate exposed to the outside, and showed a higher heat release rate and total heat release than the exterior material. Although it was affected by the flammable material, it was confirmed that it did not spread easily due to the limited amount of combustible material, and carbonization marks appeared inside. Conclusion: The cone calorimeter test method has been shown to be useful in understanding the combustion characteristics of building materials by radiant heat, but the fire spread due to a firebrand in a forest fire is directly affected by the flame due to the ignition of surrounding combustibles, so finding a direct correlation with the cone calorimeter method is difficult. It is judged that the roof material may be more vulnerable to the spread of fire due to the fire than the exterior material.

Effects of Intake Gas Mixture Cooling on Enhancement of The Maximum Brake Power in a 2.4 L Hydrogen Spark-ignition Engine (수소 내연기관의 흡기 냉각 방법에 따른 최고 출력 향상에 관한 연구)

  • Kim, Yongrae;Park, Cheolwoong;Oh, Sechul;Choi, Young;Lee, Jeongwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.11-18
    • /
    • 2021
  • Since hydrogen has the lower minimum ignition energy than that of gasoline, hydrogen could be also appropriate for the IC engine systems. However, due to the low ignition energy, there might be a 'back-fire' and 'pre-ignition' problems with hydrogen SI(Spark-ignition) combustion. In this research, cooling effects of intake gas mixture on the improvement of the maximum power output were evaluated in a 2.4 L SI engine. There were two ways to cool intake gas mixtures. The first one was cooling intake fresh air by adjusting inter-cooler system after turbocharger. The other one was cooling hydrogen fuel before supplying by using heat ex-changer. Cooling hydrogen was performed under natural aspired condition. The result showed that cooling fresh air from 40 ℃ to 20~30 ℃ improved the maximum brake power up to 6.5~8.6 % and cooling hydrogen fuel as -6 ℃ enhanced the maximum brake power likewise.

A Study on the Risk of Spontaneous ignition to Butadiene Popcorn Polymer (Butadiene Popcorn Polymer의 자연발화 위험성에 관한 연구)

  • Koo, Chae-Chil;Lee, Jung-Suk;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • This study was conducted to investigate the possibility of spontaneous ignition in Butadiene popcorn polymer, which is used as raw material and product in a chemical plant. A component analysis, thermogravimetric analysis, thermal stability analysis, spontaneous ignition point measurement and accelerated velocity calorimetric analysis were performed. As a result of analysis, various kinds of flammable components were measured and thermogravimetric analysis showed a weight loss of 95.6% in air and 89.2% in nitrogen. As a result of the thermal stability analysis, heat generation started at $88^{\circ}C$ in the air atmosphere, and the heat generation rate increased sharply in the vicinity of the natural ignition point ($220^{\circ}C$). The heat generation started at about $70^{\circ}C$ in nitrogen atmosphere, and the two exothermic peak values were observed up to $450^{\circ}C$. As a result of accelerated rate calorimetry, there was no exothermic phenomenon, and the lowest ignition temperature was $211.7^{\circ}C$ as a result of analysis of natural ignition point. Based on the results obtained from the thermal stability evaluation, it is considered that the possibility of inducing the thermal deformation of the column by the heat of reaction is sufficient.

An experimental study on the fire hazard of Sheath Heater (시즈히터의 화재위험성에 관한 실험 연구)

  • Kim, Hakjoong
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.4
    • /
    • pp.511-517
    • /
    • 2014
  • Recently, the fire by sheath heater has been occurred frequently on winter season. The sheath heater has simple internal structure and boils water simply. Therefore, the use of sheath heater has been increased. In this study, found the fire hazard property of sheath heater from understanding the fire mechanism through the experiment to get the measure for decreasing the occurrence of fire. For the analysis of the fire hazard property of the sheath heater, performed the test of temperature change and ignition temperature by using current product. On the result of test, the sheath heaters are the most dangerous appliance to arise fire. Water temperature controller attached to sheath heater is not sufficient to prevent overheating it. The sheath heater should have level switch of water and temperature controller for heater itself to shut off the power supply. Because the cause of fire by sheath heater is overheating itself in the situation of lack water.