• Title/Summary/Keyword: Fire flame detection

Search Result 79, Processing Time 0.026 seconds

Survey on a Research for Fire Safety in Space with the Understanding of Combustion Characteristics in Microgravity based on NASA's Space Research Program (NASA의 우주 연구 프로그램에 따른 미소 중력하에서의 연소 특성 및 화재 안전 연구 개괄)

  • Sohn, Chae-Hoon;Son, Young-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.65-72
    • /
    • 2007
  • Fire is one of important checkpoints in crewed exploration systems, where men inhabit in space. In space, astronaut can't escape from fire out of a spacecraft and not expect any help of fire fighters, either. Accordingly, the best way to stand against fire is to prevent it. But, when fire occurs in space, flame behaviors are quite different from those observed on earth because of micro- or zero-gravity in space. The present paper introduces major research results on flame behaviors under microgravity and fire prevention, detection, and suppression in crewed exploration spacecrafts and international space station based on NASA's FPDS research program.

Implementation of a Deep Learning based Realtime Fire Alarm System using a Data Augmentation (데이터 증강 학습 이용한 딥러닝 기반 실시간 화재경보 시스템 구현)

  • Kim, Chi-young;Lee, Hyeon-Su;Lee, Kwang-yeob
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.468-474
    • /
    • 2022
  • In this paper, we propose a method to implement a real-time fire alarm system using deep learning. The deep learning image dataset for fire alarms acquired 1,500 sheets through the Internet. If various images acquired in a daily environment are learned as they are, there is a disadvantage that the learning accuracy is not high. In this paper, we propose a fire image data expansion method to improve learning accuracy. The data augmentation method learned a total of 2,100 sheets by adding 600 pieces of learning data using brightness control, blurring, and flame photo synthesis. The expanded data using the flame image synthesis method had a great influence on the accuracy improvement. A real-time fire detection system is a system that detects fires by applying deep learning to image data and transmits notifications to users. An app was developed to detect fires by analyzing images in real time using a model custom-learned from the YOLO V4 TINY model suitable for the Edge AI system and to inform users of the results. Approximately 10% accuracy improvement can be obtained compared to conventional methods when using the proposed data.

Learning algorithm for flame pattern recognition (화재 패턴 인식을 위한 학습 알고리즘)

  • Kang, Suk Won;Lee, Soon Yi;Lee, Tae Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.521-525
    • /
    • 2009
  • In this paper, we introduce fire detection system and software learning algorithm that recognize fire patterns. Flame patterns means that periodical and consistent pattern about general conception of fire, and to process it with the definition. Learning algorithm for flame pattern recognition that we propose is the method which is faster and more exactly than existing algorithm. Also, we trying to elicit the method through experiment result and by applying it, we show the validity of an early fire warning system.

  • PDF

Forest Environment Monitoring Application of Intelligence Embedded based on Wireless Sensor Networks

  • Seo, Jung Hee;Park, Hung Bog
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1555-1570
    • /
    • 2016
  • For monitoring forest fires, a real-time system to prevent fires in wider areas should be supported consistently. However, there has still been a lack of the support for real-time system related to forest fire monitoring. In addition, the 'real-time' processing in a forest fire detection system can lead to excessive consumption of energy. To solve these problems, the intelligent data acquisition of sensing nodes is required, and the maximum energy savings as well as rapid and accurate detection by flame sensors need to be done. In this regard, this paper proposes a node built-in filter algorithm for intelligent data collection of sensing nodes for the rapid detection of forest fires with focus on reducing the power consumption of the remote sensing nodes and providing efficient wireless sensor network-based forest environment monitoring in terms of data transmission, network stability and data acquisition. The experimental result showed that battery life can be extended through the intelligent sampling of remote sensing nodes, and the average accuracy of the measurement of flame detection based on the distance is 44%.

Fabrication of smart alarm service system using a tiny flame detection sensor based on a Raspberry Pi (라즈베리파이 기반 미소 불꽃 감지를 이용한 스마트 경보 서비스 시스템 구현)

  • Lee, Young-Min;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.953-958
    • /
    • 2015
  • Raspberry Pi is a credit card-sized computer with support for a large number of input and output peripherals. This makes it the perfect platform for interaction with many different devices and for usage in a wide range of applications. When combined with Wi-Fi, it can communicate remotely, therefore increasing its suitability for the construction of wireless sensor nodes. In addition, data processing and decision-making can be based on artificial intelligence, what is performed in developed testbed on the example of monitoring and determining the confidence of fire. In this paper, we demonstrated the usage of Raspberry Pi as a sensor web node for fire-safety monitoring in a building. When the UV-flame sensors detect a flame as thin as that of a candle, the Raspberry Pi sends a push-message to notify the assigned smartphone of the on-site situation through the GCM server. A mobile app was developed to provide a real-time video streaming service in order to determine a false alarm. If an emergency occurs, one can immediately call for help.

A Study on the Smart Fire Detection System using the Wireless Communication (무선통신을 이용한 스마트 화재감지 시스템에 관한 연구)

  • Chung, Byoung-Chan;Na, Wonshik
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.3
    • /
    • pp.37-41
    • /
    • 2016
  • In this paper, we propose a fire alarm system that utilizes Wi-Fi to alarm multiple people at once. This system, based on Arduino, uses smoke, flame and temperature sensor units to sense fire and send detection data to a server via wireless communication system. The server uses stored data to relay current fire situations gathered from nearby sensors to smartphones. It also automatically reports the fire using location data from sensors. Using this system, we were able to retrieve fire alarm from sensors via push notification of our smartphone. We also confirmed the establishment of linkage with sensors and automatic report of fire via SMS. From this result, the possibility of sending real-time notifications via the Internet toward nearby smartphones about disasters such as conflagration has been proven to be feasible.

Study on the Disaster Prevention System for Wooden Cultural Assets Using USN -Focusing on the System Checking the Malfunction of Flame Detector- (USN을 이용한 목조문화재 방재시스템에 관한 연구 -불꽃감지기 오작동 확인시스템을 중심으로-)

  • Back, Min-Ho;Kim, Jeong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.49-54
    • /
    • 2010
  • The wooden cultural assets have the characteristics such as the fast spread of flame and leading to total destruction. Therefore, there is a need for a system for early countermeasure of recognized problem, along with the technological response for accurately recognizing the situation, for the prevention and early suppression of fire. To utilize such technology for detecting the situation through the latest ubiquitous technology and for a quick response to suppress fire, the ubiquitous sensor network (USN) technology, flame detector, image sensor, USN-based cultural asset disaster prevention management application case and malfunction identification system realization were examined in this study and the study result was presented focusing on the flame detector malfunction identification system for the ubiquitous-type cultural asset disaster prevention system.

Development of Fire Detection Algorithm for Video Incident Detection System of Double Deck Tunnel (복층터널 영상유고감지시스템의 화재 감지 알고리즘 개발)

  • Kim, Tae-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1082-1087
    • /
    • 2019
  • Video Incident Detection System is a detection system for the purpose of detection of an emergency in an unexpected situation such as a pedestrian in a tunnel, a falling object, a stationary vehicle, a reverse run, and a fire(smoke and flame). In recent years, the importance of the city center has been emphasized by the construction of underpasses in great depth underground space. Therefore, in order to apply Video Incident Detection System to a Double Deck Tunnel, it was developed to reflect the design characteristics of the Double Deck Tunnel. and In this paper especially, the fire detection technology, which is not it is difficult to apply to the Double Deck Tunnel environment because it is not supported on existing Video Incident Detection System or has a fail detect, we propose fire detection using color image analysis, silhouette spread, and statistical properties, It is verified through a real fire test in a double deck tunnel test bed environment.

Image based Fire Detection using Convolutional Neural Network (CNN을 활용한 영상 기반의 화재 감지)

  • Kim, Young-Jin;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1649-1656
    • /
    • 2016
  • Performance of the existing sensor-based fire detection system is limited according to factors in the environment surrounding the sensor. A number of image-based fire detection systems were introduced in order to solve these problem. But such a system can generate a false alarm for objects similar in appearance to fire due to algorithm that directly defines the characteristics of a flame. Also fir detection systems using movement between video flames cannot operate correctly as intended in an environment in which the network is unstable. In this paper, we propose an image-based fire detection method using CNN (Convolutional Neural Network). In this method, firstly we extract fire candidate region using color information from video frame input and then detect fire using trained CNN. Also, we show that the performance is significantly improved compared to the detection rate and missing rate found in previous studies.

Design and Implementation of Fire Detection System Using New Model Mixing

  • Gao, Gao;Lee, SangHyun
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.260-267
    • /
    • 2021
  • In this paper, we intend to use a new mixed model of YoloV5 and DeepSort. For fire detection, we want to increase the accuracy by automatically extracting the characteristics of the flame in the image from the training data and using it. In addition, the high false alarm rate, which is a problem of fire detection, is to be solved by using this new mixed model. To confirm the results of this paper, we tested indoors and outdoors, respectively. Looking at the indoor test results, the accuracy of YoloV5 was 75% at 253Frame and 77% at 527Frame, and the YoloV5+DeepSort model showed the same accuracy at 75% at 253 frames and 77% at 527 frames. However, it was confirmed that the smoke and fire detection errors that appeared in YoloV5 disappeared. In addition, as a result of outdoor testing, the YoloV5 model had an accuracy of 75% in detecting fire, but an error in detecting a human face as smoke appeared. However, as a result of applying the YoloV5+DeepSort model, it appeared the same as YoloV5 with an accuracy of 75%, but it was confirmed that the false positive phenomenon disappeared.